DOI QR코드

DOI QR Code

The Effects of Artificial Light Sources on Lettuce Seedling Vigor and Growth

  • Hyeon-Do Kim (Department of Horticulture Bioscience, Pusan National University) ;
  • Yeon-Ju Choi (Department of Horticulture Bioscience, Pusan National University) ;
  • Eun-Young Bae (Department of Horticulture Bioscience, Pusan National University) ;
  • Byoung-Il Je (Department of Horticulture Bioscience, Pusan National University) ;
  • Jum-Soon Kang (Department of Horticulture Bioscience, Pusan National University)
  • Received : 2024.03.12
  • Accepted : 2024.05.02
  • Published : 2024.05.31

Abstract

The aim of this study was to investigate the effects of artificial light sources on the germination and seedling vigor of lettuce, aiming to identify the optimal artificial light source for producing high-quality seedlings. Lettuce cultivar of 'Tomalin' and 'Seonpunggold' exhibited the highest seed emergence in the Metal halide(MH) lamp and High-pressure sodium(HPS) lamp treatment group, while the emergence rate parameter, T50, was the fastest in the HPS lamp treatment group. Both cultivars showed good growth characteristics such as number of leaves, root length, and stem diameter under RGB-LED, and their seedling vigor was excellent as well. The plant height was smallest in the Red + Green + Blue LED treatment, but the leaves were round and thick, resulting in higher biomass and dry weight. Single light sources of Red LED and Blue LED led to reduced growth compared with that under the mixed light treatments. Chlorophyll content in lettuce varied with the type of artificial light, with both cultivars exhibiting the highest chlorophyll content in the Red + Green + Blue LED treatment. The most suitable artificial light for lettuce seedling growth was the Red + Green + Blue LED treatment.

Keywords

Acknowledgement

This work was supported by a 2 year research grant of Pusan National University.

References

  1. Cho, J. Y., Son, D. M., Kim, J. M., Seo, B. S., Yang, S. Y., Kim, B. W., Heo, B. G., 2008, Effects of various LEDs on the seed germination, growth and physiological activities of rape(Brassica napus) sprout vegetable, Korean J. Plant Res., 21, 304-309. 
  2. Dougher, T. A., Bugbee, B., 2001, Differences in the response of wheat, soybean and lettuce to Reduced blue radiation, Phytochem Photobiol., 73, 199-207. 
  3. Jang, E. H., Seo, H. T., Kim, Y. J., Won, J. H., Park, K. J., Bang, S. B., 2017, The growth responses of fresh cut lettuces to light quality and light intensity in the plant factory using artificial lights, Hortic. Sci. Technol., 35-58. 
  4. Kasim, M. U., Kasim, R., 2016, While continuous white LED lighting increases chlorophyllcontent (SPAD), green LED light reduceds the infection rate of lettuce during storage and shelf-life conditions, J. Food processing and preservation, 41, 6. 
  5. Kim, H. G., Lee, J. S,, Kim, Y. H., 2018, Chlorophyll fluorescence, chlorophyll content, graft-taking, and growth of grafted cucumber seedlings affected by photosynthetic photon flux of LED lamps, Protected Horticulture and Plant Factory, 27, 231-238 
  6. Kim, H. H,, Goins, G. D., Wheller, R. M., Sager, J. C., 2004, Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes, HortScience, 39, 1617-1622. 
  7. Kim, S. J., Bok, G. J., Lee, G. J., Park, J. S., 2017, Growth characteristics of Lettuce under different frequency of pulse lighting and RGB Ratio of LEDs, Protected Horticulture and Plant Factory, 26, 123-132. 
  8. Kitaya, Y., Niu, G., Kozai, T., Ohashi, M., 1998, Photosynthetic photon flux, photoperiod, and CO2 concentration affect growth and morphology of lettuce plug transplants, HortScience, 33, 988-991. 
  9. KOSIS, Accessed 02 december 2022, https://kosis.kr. 
  10. Kwack, Y., An, S., 2021, Changes in growth of watermelon scions and rootstocks grown under different air temperature and light intensity conditions in a plant factory with artificial lighting, J.Bio-Environ. Control, 30, 133-139. 
  11. Kwon, K. J., Park, B. J., 2018, Effect of light intensity on the growth responses of three woody plants for indoor landscaping, J. Kor, Ins. Landscape Archite., 46, 1-8. 
  12. Lee, J. E., Kim, H. D., Lee, G. B., Kang, J. S., 2022, Effects of carbon dioxide application on the plant growth and productivity of strawberry in a greenhouse, J. Enviro. Sci. Inter., 31, 951-958. 
  13. Lee, J. G., Oh, S. S., Cha, S. H., Jang, Y. A., Kim, S. Y., Um, Y. C., Cheon, S. R, 2010, Effects of red/blue light ratio and short-term light quality conversion on growth and anthcyanin contents of baby leaf lettuce, J. Bio-Environ. Control, 19, 351-359. 
  14. Lee, J. W., Kim, H. C,, Jeong, P. H,, Ku, Y. G,, Bae, J. H,, 2014, Effects of supplemental lighting of high pressure sodium and lighting emitting plasma on growth and productivity of paprika during low radiation period of winter season, Kor. J. Hort. Sci. Technol., 32, 346-352. 
  15. Lee, K. H., 2019, Trends and prospects of future agricultural technology, https://www.ibric.org. 
  16. Ma, Y., Xu, A., Cheng, Z. M., 2021, Effects of light emitting diode lights on plant growth, development and traits a meta-analysis, Horticultural Plant, J., 7, 552-564. 
  17. McMahon, M. J., Kelly, J. W., Decoteau, D. R., 1991, Growth of Dendranthema × grandiflorum (Ramat.) kitamura under various spectral filters, J. Amer. Soc. Hort. Sci. 116, 950-954. 
  18. Park, J. S., Im, J. T., Yoon, S. W., Hwangbo, J. K., 2011, Effects of R-L/B-L LED light ratio on seedling growth of several horticultural plants, Kor. J. Hort. Sci. Technol., 29- 84. 
  19. Rajapakse, N. C., Kelly, J. W., 1992, Regulation of chrysanthemum growth by spectral filters, J. Amer. Soc. Hort. Sci., 117, 481-485. 
  20. RDA, 2018, Lettuce, Agricultural technology guide, 160, 17. 
  21. Son, K. H., Oh, M. M., 2015, Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and blue light-emitting diodes, Hortic. Environ. Biotechnol., 56, 639-653. 
  22. Um, Y. C., Oh, S. S., Lee, J. G., Kim, S. Y., Jang, Y. A., 2010, The development of container-type plant factory and growth of leafy vegetables as affected by different light source, J. Bio-Environ. Con., 19, 333-342. 
  23. Uoon, C. I., Co, Y. Y., 2019, Optimal planting density on growth and quality characteristics of kohlrabi in a closed-type plant factory system, Protected Horticulture and Plant Factory, 28, 104-109.