DOI QR코드

DOI QR Code

Antifungal Properties of Streptomyces bacillaris S8 for Biological Control Applications

  • Da-Ran Kim (Research Institute of Life Science, Gyeongsang National University) ;
  • Chang-Wook Jeon (Division of Applied Life Science (BK21Plus), Gyeongsang National University) ;
  • Youn-Sig Kwak (Research Institute of Life Science, Gyeongsang National University)
  • 투고 : 2024.01.30
  • 심사 : 2024.03.12
  • 발행 : 2024.06.01

초록

Soybean (Glycine max), a crucial global crop, experiences yearly yield reduction due to diseases such as anthracnose (Colletotrichum truncatum) and root rot (Fusarium spp.). The use of fungicides, which have traditionally been employed to control these phytopathogens, is now facing challenges due to the emergence of fungicide-resistant strains. Streptomyces bacillaris S8 strain S8 is previously known to produce valinomycin t through a nonribosomal peptide synthetase (NRPS) pathway. The objective of this study was to evaluate the antifungal activity of S. bacillaris S8 against C. truncatum and Fusarium sp., assessing its efficacy against soybean pathogens. The results indicate that strain S8 effectively controlled both above-ground and underground soybean diseases, using the NRPS and NRPS-related compound, suggesting its potential as a biological control in plant-microbe interactions. These findings underscore the pivotal role of the stain S8 in fostering healthy soybean microbial communities and emphasize the significance of microbiota structure studies in unveiling potent biocontrol agents.

키워드

과제정보

This research was supported by an agenda research program funded by the Rural Development Administration (RS-2021-RD009876).

참고문헌

  1. Agam, M. N., Raut, R. A., Jejurkar, G. B. and Sable, S. B. 2019. Evaluation of the fungicides, botanicals and bioagents against Colletotrichum truncatum causing anthracnose of soybean in pot culture. J. Pharmacogn. Phytochem. 8:629-634.
  2. Almeida-Paes, R., de Andrade, I. B., Ramos, M. L. M., Rodrigues, M. V. D. A., do Nascimento, V. A., BernardesEngemann, A. R. and Frases, S. 2021. Medicines for Malaria Venture COVID Box: a source for repurposing drugs with antifungal activity against human pathogenic fungi. Mem. Inst. Oswaldo Cruz 116:e210207.
  3. Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A.-M., Challis, G. L., Thomson, N. R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C. W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C.-H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O'Neil, S., Rabbinowitsch, E., Rajandream, M.-A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B. G., Parkhill, J. and Hopwood, D. A. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 417:141-147.
  4. Bierman, M., Logan, R., O'Brien, K., Seno, E. T., Rao, R. N. and Schoner, B. E. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43-49.
  5. Blin, K., Shaw, S., Augustijn, H. E., Reitz, Z. L., Biermann, F., Alanjary, M., Fetter, A., Terlouw, B. R., Metcalf, W. W., Helfrich, E. J. N., van Wezel, G. P., Medema, M. H. and Weber, T. 2023. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51:W46-W50.
  6. Cha, J.-Y., Han, S., Hong, H.-J., Cho, H., Kim, D., Kwon, Y., Kwon, S.-K., Crusemann, M., Lee, Y. B., Kim, J. F., Giaever, G., Nislow, C., Moore, B. S., Thomashow, L. S., Weller, D. M. and Kwak, Y.-S. 2016. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 10:119-129.
  7. Chang, X., Yan, L., Naeem, M., Khaskheli, M. I., Zhang, H., Gong, G., Zhang, M., Song, C., Yang, W., Liu, T. and Chen, W. 2020. Maize/soybean relay strip intercropping reduces the occurrence of Fusarium root rot and changes the diversity of the pathogenic Fusarium species. Pathogens 9:211.
  8. Cobb, R. E., Wang, Y. and Zhao, H. 2015. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol. 4:723-728.
  9. Deshpande, B. S., Ambedkar, S. S. and Shewale, J. G. 1988. Biologically active secondary metabolites from Streptomyces. Enzyme Microb. Technol. 10:455-473.
  10. Duran, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P. and Hacquard, S. 2018. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175:973-983.
  11. Genilloud, O. 2017. Actinomycetes: still a source of novel antibiotics. Nat. Prod. Rep. 34:1203-1232.
  12. Harir, M., Bendif, H., Bellahcene, M., Fortas, Z. and Pogni, R. 2018. Streptomyces secondary metabolites. In: Basic biology and applications of actinobacteria, ed. by S. Enany, pp. 99-122. IntechOpen, London, UK.
  13. Jeon, C.-W., Kim, D.-R., Bae, E.-J. and Kwak, Y.-S. 2021. Changes in bacterial community structure and enriched functional bacteria associated with turfgrass monoculture. Front. Bioeng. Biotechnol. 8:530067.
  14. Jeon, C.-W., Kim, D.-R. and Kwak, Y.-S. 2019. Valinomycin, produced by Streptomyces sp. S8, a key antifungal metabolite in large patch disease suppressiveness. World J. Microbiol. Biotechnol. 35:128.
  15. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. and Hopwood, D. A. 2000. Practical Streptomyces genetics. John Innes Foundation, Norwich, UK. 613 pp.
  16. Kim, D.-R., Cho, G., Jeon, C.-W., Weller, D. M., Thomashow, L. S., Paulitz, T. C. and Kwak, Y.-S. 2019. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat. Commun. 10:4802.
  17. Kim, D.-R., Kim, S.-H., Lee, S. I. and Kwak, Y.-S. 2022. Microbiota communities of healthy and bacterial pustule diseased soybean. Plant Pathol. J. 38:372-382.
  18. Kim, D.-R. and Kwak, Y.-S. 2023. Endophytic Streptomyces population induced by L-glutamic acid enhances plant resilience to abiotic stresses in tomato. Front. Microbiol. 14:1180538.
  19. Lee, N., Hwang, S., Kim, J., Cho, S., Palsson, B. and Cho, B.-K. 2020. Mini review: genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Comput. Struct. Biotechnol. J. 18:1548-1556.
  20. Lindow, S. E. and Brandl, M. T. 2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69:1875-1883.
  21. Oskay, M. 2009. Antifungal and antibacterial compounds from Streptomyces strains. Afr. J. Biotechnol. 8:3007-3017.
  22. Redford, A. J., Bowers, R. M., Knight, R., Linhart, Y. and Fierer, N. 2010. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12:2885-2893.
  23. Siupka, P., Hansen, F. T., Schier, A., Rocco, S., Sorensen, T. and Piotrowska-Seget, Z. 2021. Antifungal activity and biosynthetic potential of new Streptomyces sp. MW-W600-10 strain isolated from coal mine water. Int. J. Mol. Sci. 22:7441.
  24. Yague, P., Lopez-Garcia, M. T., Rioseras, B., Sanchez, J. and Manteca, A. 2012. New insights on the development of Streptomyces and their relationships with secondary metabolite production. Curr. Trends Microbiol. 8:65-73.
  25. Yang, Z., Wei, X., He, J., Sun, C., Ju, J. and Ma, J. 2019. Characterization of the noncanonical regulatory and transporter genes in atratumycin biosynthesis and production in a heterologous host. Mar. Drugs 17:560.
  26. Zhou, S., Wang, F., Wong, E. T., Fonkem, E., Hsieh, T.-C., Wu, J. M. and Wu, E. 2013. Salinomycin: a novel anti-cancer agent with known anti-coccidial activities. Curr. Med. Chem. 20:4095-4101.