DOI QR코드

DOI QR Code

Twindemic Threats of Weeds Coinfected with Tomato Yellow Leaf Curl Virus and Tomato Spotted Wilt Virus as Viral Reservoirs in Tomato Greenhouses

  • Nattanong Bupi (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Thuy Thi Bich Vo (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Muhammad Amir Qureshi (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Marjia Tabassum (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Hyo-jin Im (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Young-Jae Chung (Department of Biomedical Science, Hwasung Medi-Science University) ;
  • Jae-Gee Ryu (Research and Development Planning Division, Rural Development Administration) ;
  • Chang-seok Kim (Institute for Future Environmental Ecology) ;
  • Sukchan Lee (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University)
  • 투고 : 2024.03.07
  • 심사 : 2024.05.09
  • 발행 : 2024.06.01

초록

Tomato yellow leaf curl virus (TYLCV) and tomato spotted wilt virus (TSWV) are well-known examples of the begomovirus and orthotospovirus genera, respectively. These viruses cause significant economic damage to tomato crops worldwide. Weeds play an important role in the ongoing presence and spread of several plant viruses, such as TYLCV and TSWV, and are recognized as reservoirs for these infections. This work applies a comprehensive approach, encompassing field surveys and molecular techniques, to acquire an in-depth understanding of the interactions between viruses and their weed hosts. A total of 60 tomato samples exhibiting typical symptoms of TYLCV and TSWV were collected from a tomato greenhouse farm in Nonsan, South Korea. In addition, 130 samples of 16 different weed species in the immediate surroundings of the greenhouse were collected for viral detection. PCR and reverse transcription-PCR methodologies and specific primers for TYLCV and TSWV were used, which showed that 15 tomato samples were coinfected by both viruses. Interestingly, both viruses were also detected in perennial weeds, such as Rumex crispus, which highlights their function as viral reservoirs. Our study provides significant insights into the co-occurrence of TYLCV and TSWV in weed reservoirs, and their subsequent transmission under tomato greenhouse conditions. This project builds long-term strategies for integrated pest management to prevent and manage simultaneous virus outbreaks, known as twindemics, in agricultural systems.

키워드

과제정보

This work was supported by the Korean Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET), Republic of Korea through Digital Breeding Technology Development Program (grant no. 322066-3). This work was supported by the Sungkyunkwan University and the BK21 FOUR (Graduate School Innovation) funded by the Ministry of Education (MOE, Korea).

참고문헌

  1. Abdelkhalek, A. and Hafez, E. 2020. Plant viral diseases in Egypt and their control. In: Cottage industry of biocontrol agents and their applications: practical aspects to deal biologically with pests and stresses facing strategic crops, eds. by N. El-Wakeil, M. Saleh and M. Abu-hashim, pp. 403-421. Springer International Publishing, New York, NY, USA.
  2. Adkins, S. 2000. Tomato spotted wilt virus-positive steps towards negative success. Mol. Plant Pathol. 1:151-157.
  3. Alda, L. M., Gogoasa, I., Bordean, D.-M., Gergen, I., Alda, S., Moldovan, C. and Nita, L. 2009. Lycopene content of tomatoes and tomato products. J. Agroaliment. Processes Technol. 15:540-542.
  4. Behl, T., Kaur, I., Sehgal, A., Singh, S., Sharma, N., Bhatia, S., Al-Harrasi, A. and Bungau, S. 2022. The dichotomy of nanotechnology as the cutting edge of agriculture: nano-farming as an asset versus nanotoxicity. Chemosphere 288: 132533.
  5. Bonassi, S., Coskun, E., Ceppi, M., Lando, C., Bolognesi, C., Burgaz, S., Holland, N., Kirsh-Volders, M., Knasmueller, S., Zeiger, E., Carnesoltas, D., Cavallo, D., da Silva, J., de Andrade, V. M., Demircigil, G. C., Odio, A. D., Donmez-Altuntas, H., Gattas, G., Giri, A., Giri, S., Gomez-Meda, B., Gomez-Arroyo, S., Hadjidekova, V., Haveric, A., Kamboj, M., Kurteshi, K., Martino-Roth, M. G., Montoya, R. M., Nersesyan, A., Pastor-Benito, S., Salvadori, D. M. F., Shaposhnikova, A., Stopper, H., Thomas, P., Torres-Bugarin, O., Yadav, A., S., Gonzalez, G. Z. and Fenech, M. 2011. The human micronucleus project on exfoliated buccal cells (HUMN(XL)): the role of life-style, host factors, occupational exposures, health status, and assay protocol. Mutat. Res. 728:88-97.
  6. Bupi, N., Sangaraju, V. K., Phan, L. T., Lal, A., Vo, T. T. B., Ho, P. T., Qureshi, M. A., Tabassum, M., Lee, S. and Manavalan, B. 2023. An effective integrated machine learning framework for identifying severity of Tomato yellow yeaf curl virus and their experimental validation. Research 6:0016.
  7. Cabrera, A., Celis, R. and Hermosin, M. C. 2016. Imazamox-clay complexes with chitosan-and iron (iii)-modified smectites and their use in nanoformulations. Pest Manag. Sci. 72:1285-1294.
  8. Chen, X., Cui, Z., Fan, M., Vitousek, P., Zhao, M., Ma, W., Wang, Z., Zhang, W., Yan, X., Yang, J., Deng, X., Gao, Q., Zhang, Q., Guo, S., Ren, J., Li, S., Ye, Y., Wang, Z., Huang, J., Tang, Q., Sun, Y., Peng, X., Zhang, J., He, M., Zhu, Y., Xue, J., Wang, G., Wu, L., An, N., Wu, L., Ma, L., Zhang, W. and Zhang, F. 2014. Producing more grain with lower environmental costs. Nature 514:486-489.
  9. Costa, J. M. and Heuvelink, E. 2018. The global tomato industry. In: Tomatoes, ed. by E. Heuvelink, pp. 1-26. CABI, Wallingford, UK.
  10. Czosnek, H. and Laterrot, H. 1997. A worldwide survey of Tomato yellow leaf curl viruses. Arch. Virol. 142:1391-1406.
  11. Davies, S. L. and Peoples, M. B. 2003. Identifying potential approaches to improve the reliability of terminating a lucerne pasture before cropping: a review. Aust. J. Exp. Agric. 43:429-447.
  12. Dhaliwal, M. S., Jindal, S. K., Sharma, A. and Prasanna, H. C. 2020. Tomato yellow leaf curl virus disease of tomato and its management through resistance breeding: a review. J. Hortic. Sci. Biotechnol. 95:425-444.
  13. Dorais, M., Ehret, D. L. and Papadopoulos, A. P. 2008. Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochem. Rev. 7:231-250.
  14. Duffus, J. E. 1971. Role of weeds in the incidence of virus diseases. Annu. Rev. Phytopathol. 9:319-340.
  15. Ferdinand, K. C., Nedunchezhian, S. and Reddy, T. K. 2020. The COVID-19 and influenza "twindemic": barriers to influenza vaccination and potential acceptance of SARS-CoV2 vaccination in African Americans. J. Natl. Med. Assoc. 112:681-687.
  16. Ghanim, M., Morin, S., Zeidan, M. and Czosnek, H. 1998. Evidence for transovarial transmission of Tomato yellow leaf curl virus by its vector, the whitefly Bemisia tabaci. Virology 240:295-303.
  17. Groves, R. L., Walgenbach, J. F., Moyer, J. W. and Kennedy, G. G. 2002. The role of weed hosts and tobacco thrips, Frankliniella fusca, in the epidemiology of Tomato spotted wilt virus. Plant Dis. 86:573-582.
  18. Hanssen, I. M., Lapidot, M. and Thomma, B. P. H. J. 2010. Emerging viral diseases of tomato crops. Mol. Plant-Microb. Interact. 23:539-548.
  19. Hess, F. D. 2018. Herbicide absorption and translocation and their relationship to plant tolerances and susceptibility. In: Weed physiology, ed. by S. O. Duke, pp. 191-214. CRC Press, Boca Raton, FL, USA.
  20. Hoang, N. H., Yang, H.-B. and Kang, B.-C. 2013. Identification and inheritance of a new source of resistance against Tomato spotted wilt virus (TSWV) in capsicum. Sci. Hortic. 161:8-14.
  21. Jones, D. R. 2003. Plant viruses transmitted by whiteflies. Eur. J. Plant Pathol. 109: 195-219.
  22. Karienye, J. M., Nduru, G. M., Huho, J. M. and Opiyo, F. E. 2018. Influence of rainfall variability on tomato production among small scale farmers in Kieni East Sub County. J. Arts Hum. 8:7-19.
  23. Kaushal, A., Sadashiva, A. T., Krishna Reddy, M., Srinivasa Rao, E., Singh, T. H., Sriram, S., Dhananjay, M. V., Venugopalan, R. and Ravishankar, K. V. 2020. Assessment of the effectiveness of Ty genes in tomato against Tomato leaf curl Bangalore virus. Plant Pathol. 69:1777-1786.
  24. Kil, E.-J., Chung, Y.-J., Choi, H.-S., Lee, S. and Kim, C.-S. 2020. Life cycle-based host range analysis for Tomato spotted wilt virus in Korea. Plant Pathol. J. 36:67-75.
  25. Kil, E.-J., Kim, S., Lee, Y.-J., Byun, H.-S., Park, J., Seo, H., Kim, C.-S., Shim, J.-K., Lee, J.-H., Kim, J.-K., Lee, K.-Y., Choi, H.-S. and Lee, S. 2016. Tomato yellow leaf curl virus (TYLCV-IL): a seed-transmissible geminivirus in tomatoes. Sci. Rep. 6:19013.
  26. Kim, J.-H., Choi, G.-S., Kim, J.-S. and Choi, J.-K. 2004. Characterization of Tomato spotted wilt virus from paprika in Korea. Plant Pathol. J. 20: 297-301.
  27. Kokalis-Burelle, N. 2002. Biological control of tomato diseases. In: Biological control of crop diseases, ed. by S. S. Gnanamanickam, pp. 239-276. CRC Press, Boca Raton, FL, USA.
  28. Kwon, Y., Cha, B. and Kim, M. 2022. Patterns of the occurrence of TYLCV and ToCV with whitefly on summer-cultivated tomato in greenhouse in Gwangju, Gyeonggi province. Res. Plant Dis. 28:39-45 (in Korean).
  29. Lal, A., Pant, M. and Rani, A. 2015. The who's who of plant viruses: a cognitive approach. Asian J. Pharm. Clin. Res. 8:60-68.
  30. Lee, H., Song, W., Kwak, H.-R., Kim, J.-D., Park, J., Auh, C.-K., Kim, D.-H., Lee, K.-Y., Lee, S. and Choi, H.-S. 2010. Phylogenetic analysis and inflow route of Tomato yellow leaf curl virus (TYLCV) and Bemisia tabaci in Korea. Mol. Cells 30:467-476.
  31. Lee, M., Uhm, K.-B., Lee, S., Park, H. and Ghanim, M. 2008. Occurrence of Bemisia tabaci and its vectored virus in Korea. In: Proceedings of the Korean Society of Applied Entomology Conference, pp. 151-152. Korean Society of Applied Entomolohy, Suwon, Korea (in Korean).
  32. Li, J., Wang, J.-C., Ding, T.-B. and Chu, D. 2021. Synergistic effects of a Tomato chlorosis virus and Tomato yellow leaf curl virus mixed infection on host tomato plants and the whitefly vector. Front. Plant Sci. 12:672400.
  33. Maes, P., Alkhovsky, S. V., Bao, Y., Beer, M., Birkhead, M., Briese, T., Buchmeier, M. J., Calisher, C. H., Charrel, R. N., Choi, I. R., Clegg, C. S., de la Torre, J. C., Delwart, E., DeRisi, J. L., Di Bello, P. L., Di Serio, F., Digiaro, M., Dolja, V. V., Drosten, C., Druciarek, T. Z., Du, J., Ebihara, H., Elbeaino, T., Gergerich, R. C., Gillis, A. N., Gonzalez, J.-P. J., Haenni, A.-L., Hepojoki, J., Hetzel, U., Hồ, T., Hong, N., Jain, R. K., van Vuren, P. J., Jin, Q., Jonson, M. G., Junglen, S., Keller, K. E., Kemp, A., Kipar, A., Kondov, N. O., Koonin, E. V., Kormelink, R., Korzyukov, Y., Krupovic, M., Lambert, A. J., Laney, A. G., LeBreton, M., Lukashevich, I. S., Marklewitz, M., Markotter, W., Martelli, G. P., Martin, R. R., Mielke-Ehret, N., Muhlbach, H.-P., Navarro, B., Ng, T. F. F., Nunes, M. R. T., Palacios, G., Paweska, J. T., Peters, C. J., Plyusnin, A., Radoshitzky, S. R., Romanowski, V., Salmenpera, P., Salvato, M. S., Sanfacon, H., Sasaya, T., Schmaljohn, C., Schneider, B. S., Shirako, Y., Siddell, S., Sironen, T. A., Stenglein, M. D., Storm, N., Sudini, H., Tesh, R. B., Tzanetakis, I. E., Uppala, M., Vapalahti, O., Vasilakis, N., Walker, P. J., Wang, G., Wang, L., Wang, Y., Wei, T., Wiley, M. R., Wolf, Y. I., Wolfe, N. D., Wu, Z., Xu, W., Yang, L., Yang, Z., Yeh, S.-D., Zhang, Y.-Z., Zheng, Y., Zhou, X., Zhu, C., Zirkel, F. and Kuhn, J. H. 2018. Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018. Arch. Virol. 163:2295-2310.
  34. Mahy, B. W. J. and van Regenmortel, M. H. V. 2008. Encyclopedia of virology. 3rd ed. Elsevier Inc., Amsterdam, Netherlands. 3192 pp.
  35. Manisankar, G., Ghosh, P., Malik, G. C. and Banerjee, M. 2022. Recent trends in chemical weed management: a review. Pharm. Innov. J. 11:745-753.
  36. Massumi, H., Shaabanian, M., Pour, A. H., Heydarnejad, J. and Rahimian, H. 2009. Incidence of viruses infecting tomato and their natural hosts in the southeast and central regions of Iran. Plant Dis. 93:67-72.
  37. Ong, S. N., Taheri, S., Othman, R. Y. and Teo, C. H. 2020. Viral disease of tomato crops (Solanum lycopersicum L.): an overview. J. Plant Dis. Prot. 127:725-739.
  38. Palai, M. J. B. 2010. Weed management. Centurion University of Technology & Management, Paralakhemundi, Odisha, India. 75 pp.
  39. Panno, S., Davino, S., Caruso, A. G., Bertacca, S., Crnogorac, A., Mandic, A., Noris, E. and Matic, S. 2021. A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the mediterranean basin. Agronomy 11:2188.
  40. Pek, Z., Helyes, L. and Lugasi, A. 2010. Color changes and antioxidant content of vine and postharvest-ripened tomato fruits. HortScience 45:466-468.
  41. Pek, Z., Szuvandzsiev, P., Nemenyi, A., Helyes, L. and Lugasi, A. 2011. The effect of natural light on changes in antioxidant content and color parameters of vine-ripened tomato (Solanum lycopersicum L.) fruits. HortScience 46:583-585.
  42. Polston, J. E., Schuster, D. J. and Taylor, J. E. 2009. Identification of weed reservoirs of tomato yellow leaf curl virus in Florida. In: 2009 Tomato Institute Proceedings by University of Florida, eds. by E. Simone, C. Snodgrass and M. Ozores-Hampton, pp. 32-33. University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA.
  43. Rao, V. S. 2000. Principles of weed science. CRC Press, Boca Raton, FL, USA. 564 pp.
  44. Riley, D. G., Joseph, S. V., Srinivasan, R. and Diffie, S. 2011. Thrips vectors of Tospoviruses. J. Integr. Pest Manag. 2:I1-I10.
  45. Savary, S., Ficke, A., Aubertot, J.-N. and Hollier, C. 2012. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. 4:519-537.
  46. Steinmann, H. H., Dickeduisberg, M. and Theuvsen, L. 2012. Uses and benefits of glyphosate in German arable farming. Crop Prot. 42:164-169.
  47. Sundaraj, S., Srinivasan, R., Culbreath, A. K., Riley, D. G. and Pappu, H. R. 2014. Host plant resistance against tomato spotted wilt virus in peanut (Arachis hypogaea) and its impact on susceptibility to the virus, virus population genetics, and vector feeding behavior and survival. Phytopathology 104:202-210.
  48. Wu, Z., Chen, Y., Zhao, B., Kang, X. and Ding, Y. 2021. Review of weed detection methods based on computer vision. Sensors 21:3647.
  49. Zayan, S. A. 2019. Impact of climate change on plant diseases and IPM strategies. In: Plant diseases: current threats and management trends, ed. by S. Topolovec-Pintaric. IntechOpen, London, UK.