DOI QR코드

DOI QR Code

Exosomes in Action: Unraveling Their Role in Autoimmune Diseases and Exploring Potential Therapeutic Applications

  • Shuanglong Zhou (Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University) ;
  • Jialing Huang (Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University) ;
  • Yi Zhang (Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University) ;
  • Hongsong Yu (Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University) ;
  • Xin Wang (School of Basic Medical Sciences, Zunyi Medical University)
  • 투고 : 2023.11.17
  • 심사 : 2024.02.07
  • 발행 : 2024.04.30

초록

Exosomes are double phospholipid membrane vesicles that are synthesized and secreted by a variety of cells, including T cells, B cells, dendritic cells, immune cells, are extracellular vesicles. Recent studies have revealed that exosomes can play a significant role in under both physiological and pathological conditions. They have been implicated in regulation of inflammatory responses, immune response, angiogenesis, tissue repair, and antioxidant activities, particularly in modulating immunity in autoimmune diseases (AIDs). Moreover, variations in the expression of exosome-related substances, such as miRNA and proteins, may not only offer valuable perspectives for the early warning, and prognostic assessment of various AIDs, but may also serve as novel markers for disease diagnosis. This article examines the impact of exosomes on the development of AIDs and explores their potential for therapeutic application.

키워드

과제정보

This work was supported by National Key R&D Program of China (grant number: 2018YFC1004303), National Natural Science Foundation Project of China (grant number: 82160154), the Hundred-level Innovative Talent Foundation of Guizhou Province (grant number: QKH-PTRC-GCC[2023]041), the Key Project of Guizhou Provincial Science and Technology Department (grant number: QKH-JC-2019-1464), the Science and Technology Foundation of Guizhou Province (grant number: QKH-PTRC-2018-5772-042), the Science and Technology Foundation of Guizhou Provincial Health Commission (grant number: gzwkj2022-268), the Project of Development Research Center of Guizhou Provincial Dendrobium Industry (grant number: QSKH[2019003013]), the Science and Technology Project of Zunyi (grant number: ZSKH-HZ -2020-35) and the Program for Excellent Young Talents of Zunyi Medical University (grant number: 18-ZY-001).

참고문헌

  1. Barati M, Ghahremani A, Namdar Ahmadabad H. Intermittent fasting: a promising dietary intervention for autoimmune diseases. Autoimmun Rev 2023;22:103408.
  2. Betterle C, Furmaniak J, Sabbadin C, Scaroni C, Presotto F. Type 3 autoimmune polyglandular syndrome (APS-3) or type 3 multiple autoimmune syndrome (MAS-3): an expanding galaxy. J Endocrinol Invest 2023;46:643-665.
  3. Ibanez-Cabellos JS, Pallardo FV, Garcia-Gimenez JL, Seco-Cervera M. Oxidative stress and epigenetics: miRNA involvement in rare autoimmune diseases. Antioxidants 2023;12:800.
  4. Chi X, Huang M, Tu H, Zhang B, Lin X, Xu H, Dong C, Hu X. Innate and adaptive immune abnormalities underlying autoimmune diseases: the genetic connections. Sci China Life Sci 2023;66:1482-1517.
  5. Yao X, Wang Q, Zeng P, Hou L, Yang Y, Lu D, Huang Y, Ning Q, Xu H, Cao Y, et al. LncRNA HOTTIP from synovial fibroblast-derived exosomes: a novel molecular target for rheumatoid arthritis through the miR-1908-5p/STAT3 axis. Exp Cell Res 2021;409:112943.
  6. Wang HB, Deng CY. Biological function and clinical potential therapeutic applications of exosomes. J Reprod Med 2021;30:966-970. 
  7. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020;367:eaau6977.
  8. Chung IM, Rajakumar G, Venkidasamy B, Subramanian U, Thiruvengadam M. Exosomes: current use and future applications. Clin Chim Acta 2020;500:226-232.
  9. Dong C, Zhou Q, Fu T, Zhao R, Yang J, Kong X, Zhang Z, Sun C, Bao Y, Ge X, et al. Circulating exosomes derived-miR-146a from systemic lupus erythematosus patients regulates senescence of mesenchymal stem cells. BioMed Res Int 2019;2019:6071308. 
  10. Perez-Hernandez J, Forner MJ, Pinto C, Chaves FJ, Cortes R, Redon J. Increased urinary exosomal microRNAs in patients with systemic lupus erythematosus. PLoS One 2015;10:e0138618.
  11. Xu H, Jia S, Xu H. Potential therapeutic applications of exosomes in different autoimmune diseases. Clin Immunol 2019;205:116-124.
  12. Kowal J, Tkach M, Thery C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol 2014;29:116-125.
  13. Zhang W, Jiang H, Kong Y. Exosomes derived from platelet-rich plasma activate YAP and promote the fibrogenic activity of Muller cells via the PI3K/Akt pathway. Exp Eye Res 2020;193:107973.
  14. Fang Y, Ni J, Wang YS, Zhao Y, Jiang LQ, Chen C, Zhang RD, Fang X, Wang P, Pan HF. Exosomes as biomarkers and therapeutic delivery for autoimmune diseases: opportunities and challenges. Autoimmun Rev 2023;22:103260.
  15. Kostopoulou M, Fanouriakis A, Bertsias G, Boumpas DT. Annals of the Rheumatic Diseases collection on lupus nephritis (2019-2022): novel insights and advances in therapy. Ann Rheum Dis 2023;82:729-733.
  16. Perez-Hernandez J, Cortes R. Extracellular vesicles as biomarkers of systemic lupus erythematosus. Dis Markers 2015;2015:613536.
  17. Lee JY, Park JK, Lee EY, Lee EB, Song YW. Circulating exosomes from patients with systemic lupus erythematosus induce an proinflammatory immune response. Arthritis Res Ther 2016;18:264.
  18. Liu DF, Wang AF, He HZ. Bone marrow mesenchymal stem cell exosomes miR-10a-5p regulates systemic lupus erythematosus cells by down-regulating expression of UVRAG. Chin J Immunol 2020;36:2142-2147. 
  19. Cao W, Qian G, Luo W, Liu X, Pu Y, Hu G, Han L, Yuan L, A X, Deng D. miR-125b is downregulated in systemic lupus erythematosus patients and inhibits autophagy by targeting UVRAG. Biomed Pharmacother 2018;99:791-797.
  20. Tu J, Zheng N, Mao C, Liu S, Zhang H, Sun L. UC-BSCs exosomes regulate Th17/Treg balance in patients with systemic lupus erythematosus via miR-19b/KLF13. Cells 2022;11:4123.
  21. Li C. Analysis on miRNA Expression Profile of Urinary Exosomes in Type IV LN Complicated by Cellular Crescents. Chongqing: Chinese People's Liberation Army, Army Medical University; 2018. 
  22. Huang J, Li Z, Cheng L, Zhang P, Li X, Feng G. Comparison of plasma levels and immunoactivities of different forms of circulating-free DNA in systemic lupus erythematosus patients. Xibao Yu Fenzi Mianyixue Zazhi 2021;37:633-640.
  23. Xu Y, Zhou R, Zhang XZ, Ma HL. Study on the differential expression of circular rna in serum exosomes of patients with SLE. J Hubei Univ Sci Technol Med Ed 2022;36:129-133. 
  24. Xu JN. Expression and Its Significance of MicroRNAs in Plasma Exosomes of Patients With Systemic Lupus Erythematosus. He Fei Shi: Anhui Medical University; 2022. 
  25. Chen J, Lin X, He J, Liu J, He J, Tao C, Wang Q. Novel isatin-based hybrids as potential anti-rheumatoid arthritis drug candidates: synthesis and biological evaluation. Bioorg Chem 2022;128:106063.
  26. Li Z, Wang Y, Xiao K, Xiang S, Li Z, Weng X. Emerging role of exosomes in the joint diseases. Cell Physiol Biochem 2018;47:2008-2017.
  27. Wang L, Wang C, Jia X, Yu J. Circulating exosomal miR-17 inhibits the induction of regulatory T cells via suppressing TGFBR II expression in rheumatoid arthritis. Cell Physiol Biochem 2018;50:1754-1763.
  28. Ren Z, Liu X, Abdollahi E, Tavasolian F. Genetically engineered exosomes as a potential regulator of Th1 cells response in rheumatoid arthritis. Biopreserv Biobank 2023;21:355-366.
  29. Hu Q, Su H, Li J, Lyon C, Tang W, Wan M, Hu TY. Clinical applications of exosome membrane proteins. Precis Clin Med 2020;3:54-66.
  30. Ren J, Zhang F, Zhu S, Zhang W, Hou J, He R, Wang K, Wang Z, Liang T. Exosomal long non-coding RNA TRAFD1-4:1 derived from fibroblast-like synoviocytes suppresses chondrocyte proliferation and migration by degrading cartilage extracellular matrix in rheumatoid arthritis. Exp Cell Res 2023;422:113441.
  31. Chen J, Liu M, Luo X, Peng L, Zhao Z, He C, He Y. Exosomal miRNA-486-5p derived from rheumatoid arthritis fibroblast-like synoviocytes induces osteoblast differentiation through the Tob1/BMP/Smad pathway. Biomater Sci 2020;8:3430-3442.
  32. Edhayan G, Ohara RA, Stinson WA, Amin MA, Isozaki T, Ha CM, Haines GK 3rd, Morgan R, Campbell PL, Arbab AS, et al. Inflammatory properties of inhibitor of DNA binding 1 secreted by synovial fibroblasts in rheumatoid arthritis. Arthritis Res Ther 2016;18:87. 
  33. Zhang L, Qin Z, Sun H, Chen X, Dong J, Shen S, Zheng L, Gu N, Jiang Q. Nanoenzyme engineered neutrophil-derived exosomes attenuate joint injury in advanced rheumatoid arthritis via regulating inflammatory environment. Bioact Mater 2022;18:1-14.
  34. Chen Z, Wang H, Xia Y, Yan F, Lu Y. Therapeutic potential of mesenchymal cell-derived mirna-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol 2018;201:2472-2482.
  35. Mi L, Gao J, Li N, Liu Y, Zhang N, Gao Y, Peng X, Zhang L, Xu K. Human umbilical cord mesenchymal stem cell-derived exosomes loaded miR-451a targets ATF2 to improve rheumatoid arthritis. Int Immunopharmacol 2024;127:111365.
  36. Lee HI, Ahn MJ, Yoo JK, Ahn SH, Park SY, Seo H, Kim MJ, Lee YJ, Jang HH, Shim SC, et al. Exosome-mediated delivery of super-repressor IκBα alleviates inflammation and joint damages in rheumatoid arthritis. Arthritis Res Ther 2024;26:2.
  37. Li H, Feng Y, Zheng X, Jia M, Mei Z, Wang Y, Zhang Z, Zhou M, Li C. M2-type exosomes nanoparticles for rheumatoid arthritis therapy via macrophage re-polarization. J Control Release 2022;341:16-30.
  38. Vargas-Uricoechea H. Molecular mechanisms in autoimmune thyroid disease. Cells 2023;12:918.
  39. Zhao N. MicroRNA-326 Participates in Autoimmune Thyroiditis by Regulating Th17 Cells. Taichung: China Medical University; 2019. 
  40. Cui XJ. Study on Exosome-Induced T Lymphocyte Imbalance in The Pathogenesis of Autoimmune Thyroiditis. Taichung: China Medical University; 2020. 
  41. Cui X, Liu Y, Wang S, Zhao N, Qin J, Li Y, Fan C, Shan Z, Teng W. Circulating exosomes activate dendritic cells and induce unbalanced CD4+ T cell differentiation in Hashimoto thyroiditis. J Clin Endocrinol Metab 2019;104:4607-4618.
  42. Huang MS. Circulating Exosomes From Patients With Graves Disease Induce an Proinflammatory Immune Response via Toll-Like Receptor. Taichung: China Medical University; 2019. 
  43. Hiratsuka I, Yamada H, Munetsuna E, Hashimoto S, Itoh M. Circulating microRNAs in graves' disease in relation to clinical activity. Thyroid 2016;26:1431-1440.
  44. Sun Y, Wang W, Tang Y, Wang D, Li L, Na M, Jiang G, Li Q, Chen S, Zhou J. Microarray profiling and functional analysis of differentially expressed plasma exosomal circular RNAs in Graves' disease. Biol Res 2020;53:32.
  45. Ridgewell D, Thalayasingam N, Ng WF. Sjogren's syndrome: shedding light on emerging and key drug targets. Expert Opin Ther Targets 2022;26:869-882.
  46. Andre F, Bockle BC. Sjogren's syndrome. J Dtsch Dermatol Ges 2022;20:980-1002.
  47. Kapsogeorgou EK, Abu-Helu RF, Moutsopoulos HM, Manoussakis MN. Salivary gland epithelial cell exosomes: a source of autoantigenic ribonucleoproteins. Arthritis Rheum 2005;52:1517-1521.
  48. Cortes-Troncoso J, Jang SI, Perez P, Hidalgo J, Ikeuchi T, Greenwell-Wild T, Warner BM, Moutsopoulos NM, Alevizos I. T cell exosome-derived miR-142-3p impairs glandular cell function in Sjogren's syndrome. JCI Insight 2020;5:e133497.
  49. Gallo A, Jang SI, Ong HL, Perez P, Tandon M, Ambudkar I, Illei G, Alevizos I. Targeting the Ca(2+) sensor STIM1 by exosomal transfer of ebv-miR-BART13-3p is associated with Sjogren's syndrome. EBioMedicine 2016;10:216-226.
  50. Li B, Xing Y, Gan Y, He J, Hua H. Labial gland-derived mesenchymal stem cells and their exosomes ameliorate murine Sjogren's syndrome by modulating the balance of Treg and Th17 cells. Stem Cell Res Ther 2021;12:478.
  51. Du Z, Wei P, Jiang N, Wu L, Ding C, Yu G. SHED-derived exosomes ameliorate hyposalivation caused by Sjogren's syndrome via Akt/GSK-3β/Slug-mediated ZO-1 expression. Chin Med J (Engl) 2023;136:2596-2608.
  52. Lei LY, Guo HF, Zhang MF, Gao LX, Ma LY, Sun C, Jin HT. Role of Tfh cells in pathogenesis of primary Sjogren's syndrome. Chin J Immunol 2014;30:392-399. 
  53. Saito M, Otsuka K, Ushio A, Yamada A, Arakaki R, Kudo Y, Ishimaru N. Unique phenotypes and functions of follicular helper T cells and regulatory T cells in Sjogren's syndrome. Curr Rheumatol Rev 2018;14:239-245.
  54. Ma D, Wu Z, Zhao X, Zhu X, An Q, Wang Y, Zhao J, Su Y, Yang B, Xu K, et al. Immunomodulatory effects of umbilical mesenchymal stem cell-derived exosomes on CD4+ T cells in patients with primary Sjogren's syndrome. Inflammopharmacology 2023;31:1823-1838. 
  55. Xu HY, Li MX, Liang DY, Ge XQ, Bao ZH, Wei MG, Liu JL, Li JP. The expression of plasma exosomal miR-1224-5p in myasthenia gravis and its diagnostic value as a biomarker. Chin J Neuroimmunol Neurol 2019;26:172-178. 
  56. Li MX, Xu HY, Wei MG, Bao ZH, Xu X, Liu JL, Li JP. Preliminary study on microRNA expression profile of plasma exosomes in patients with myasthenia gravis. Chin J Immunol 2020;36:3010-3014. 
  57. Liang DY. A Preliminary Study of Plasma Exosomal miR-1273f as a Marker for Diagnosis of Systemic Myasthenia Gravis. Nanning: Guangxi Medical University; 2018. 
  58. Xu HY. Plasma Exosomal MiR-106a-5p: A New Potential Biomarker for Myasthenia Gravis. Nanning: Guangxi Medical University; 2019. 
  59. Xu H, Bao Z, Liang D, Li M, Wei M, Ge X, Liu J, Li J. Plasma exosomal miR-106a-5p expression in myasthenia gravis. Muscle Nerve 2020;61:401-407.
  60. Yin W, Ouyang S, Luo Z, Zeng Q, Hu B, Xu L, Li Y, Xiao B, Yang H. Immature exosomes derived from microrna-146a overexpressing dendritic cells act as antigen-specific therapy for myasthenia gravis. Inflammation 2017;40:1460-1473.
  61. Lu W, Lu Y, Wang CF, Chen TT. Expression profiling and bioinformatics analysis of exosomal long noncoding RNAs in patients with myasthenia gravis by RNA sequencing. J Clin Lab Anal 2021;35:e23722.
  62. Zhong H, Lu J, Jing S, Xi J, Yan C, Song J, Luo S, Zhao C. Low-dose rituximab lowers serum exosomal miR-150-5p in AChR-positive refractory myasthenia gravis patients. J Neuroimmunol 2020;348:577383.
  63. Liu X, Lin SX, Yao Z, Wang XW, Zhang ZJ, Ru BR, Xu ZJ, Lei CZ, Huang YX. Role of exosomes in muscle development and its research advances. Hubei Agr Sci 2021;60:54-57. 
  64. Zhang QY, Li H, Li CY, Han WH, Zhang Y, Zhu DH. Skeletal muscle derived-exosome promotes proliferation and inhibits differentiation of muscle stem cells. Chin J Cell Biol 2018;40:1171-1178. 
  65. Zhou B. Preliminary Study on the Mechanism of Mesenchymal Stem Cell Exosome-Derived miR-25 in the Treatment of Type 1 Diabetes in Mice. Tianjin: Tianjin Medical University; 2020. 
  66. Sabry D, Marzouk S, Zakaria R, Ibrahim HA, Samir M. The effect of exosomes derived from mesenchymal stem cells in the treatment of induced type 1 diabetes mellitus in rats. Biotechnol Lett 2020;42:1597-1610.
  67. Zhang L, Yang SC, Tang JY, Huang WZ, Huang CY. Proteomic analysis of plasma exosome protein in patients with type 1 diabetes mellitus. Int J Lab Med 2020;41:588-591. 
  68. Qian XL. Exosomes Derived From TNF-a Treated HUC-MSCs Treat Type 1 Diabetes by Immunosuppression. Changchun: Jilin University; 2021. 
  69. Chang W, Wang J. Exosomes and their noncoding RNA cargo are emerging as new modulators for diabetes mellitus. Cells 2019;8:853.
  70. Pang H, Fan W, Shi X, Li J, Wang Y, Luo S, Lin J, Huang G, Li X, Xie Z, et al. Characterization of lncRNA profiles of plasma-derived exosomes from type 1 diabetes mellitus. Front Endocrinol (Lausanne) 2022;13:822221.
  71. Liu Y, Du X, Cui J, Li C, Guo M, Lv J, Liu X, Dou J, Du X, Fang H, et al. A genome-wide analysis of long noncoding RNAs in circulating leukocytes and their differential expression in type 1 diabetes patients. J Diabetes Res 2020;2020:9010314.
  72. Geng G, Zhang Z, Cheng L. Identification of a multi-long noncoding RNA signature for the diagnosis of type 1 diabetes mellitus. Front Bioeng Biotechnol 2020;8:553.
  73. Wang J, Ruan Z, Jiang B. Current situation and the trend of clinical trials of drugs for treatment of multiple sclerosis. Chin J Mod Appl Pharm 2022;39:2405-2411. 
  74. Galazka G, Mycko MP, Selmaj I, Raine CS, Selmaj KW. Multiple sclerosis: serum-derived exosomes express myelin proteins. Mult Scler 2018;24:449-458.
  75. Zhang J, Buller BA, Zhang ZG, Zhang Y, Lu M, Rosene DL, Medalla M, Moore TL, Chopp M. Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and reduce neuroinflammation in the demyelinating central nervous system. Exp Neurol 2022;347:113895.
  76. Li Z, Liu F, He X, Yang X, Shan F, Feng J. Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. Int Immunopharmacol 2019;67:268-280.
  77. Wang J, Sun H, Guo R, Guo J, Tian X, Wang J, Sun S, Han Y, Wang Y. Exosomal miR-23b-3p from bone mesenchymal stem cells alleviates experimental autoimmune encephalomyelitis by inhibiting microglial pyroptosis. Exp Neurol 2023;363:114374. 
  78. Fan J, Han Y, Sun H, Sun S, Wang Y, Guo R, Guo J, Tian X, Wang J, Wang J. Mesenchymal stem cell-derived exosomal microRNA-367-3p alleviates experimental autoimmune encephalomyelitis via inhibition of microglial ferroptosis by targeting EZH2. Biomed Pharmacother 2023;162:114593.
  79. Ebrahimkhani S, Vafaee F, Young PE, Hur SS, Hawke S, Devenney E, Beadnall H, Barnett MH, Suter CM, Buckland ME. Exosomal microRNA signatures in multiple sclerosis reflect disease status. Sci Rep 2017;7:14293.
  80. Xiao Y, Tian J, Wu WC, Gao YH, Guo YX, Song SJ, Gao R, Wang LB, Wu XY, Zhang Y, et al. Targeting central nervous system extracellular vesicles enhanced triiodothyronine remyelination effect on experimental autoimmune encephalomyelitis. Bioact Mater 2021;9:373-384.
  81. Pan XL, Ying CM, Liu FX, Zhang YK. Research progress of traditional Chinese medicine combined with stem cells in treatment of multiple sclerosis. Chin Arch Tradit Chin Med 2023;41:155-160. 
  82. Guay C, Kruit JK, Rome S, Menoud V, Mulder NL, Jurdzinski A, Mancarella F, Sebastiani G, Donda A, Gonzalez BJ, et al. Lymphocyte-derived exosomal microRNAs promote pancreatic β cell death and may contribute to type 1 diabetes development. Cell Metab 2019;29:348-361.e6.
  83. Wu LF, Zhang Q, Mo XB, Lin J, Wu YL, Lu X, He P, Wu J, Guo YF, Wang MJ, et al. Identification of novel rheumatoid arthritis-associated MiRNA-204-5p from plasma exosomes. Exp Mol Med 2022;54:334-345.
  84. Riazifar M, Mohammadi MR, Pone EJ, Yeri A, Lasser C, Segaliny AI, McIntyre LL, Shelke GV, Hutchins E, Hamamoto A, et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano 2019;13:6670-6688.
  85. Rui K, Hong Y, Zhu Q, Shi X, Xiao F, Fu H, Yin Q, Xing Y, Wu X, Kong X, et al. Olfactory ectomesenchymal stem cell-derived exosomes ameliorate murine Sjogren's syndrome by modulating the function of myeloid-derived suppressor cells. Cell Mol Immunol 2021;18:440-451.
  86. Zhang Y, Tu B, Sha Q, Qian J. Bone marrow mesenchymal stem cells-derived exosomes suppress miRN-A5189-3p to increase fibroblast-like synoviocyte apoptosis via the BATF2/JAK2/STAT3 signaling pathway. Bioengineered 2022;13:6767-6780.
  87. Garcia-Diaz DF, Pizarro C, Camacho-Guillen P, Codner E, Soto N, Perez-Bravo F. Expression of miR-155, miR-146a, and miR-326 in T1D patients from Chile: relationship with autoimmunity and inflammatory markers. Arch Endocrinol Metab 2018;62:34-40.
  88. Ma W, Tang F, Xiao L, Han S, Yao X, Zhang Q, Zhou J, Wang Y, Zhou J. miR-205-5p in exosomes divided from chondrogenic mesenchymal stem cells alleviated rheumatoid arthritis via regulating MDM2 in fibroblast-like synoviocytes. J Musculoskelet Neuronal Interact 2022;22:132-141.
  89. Huang Y, Chen L, Chen D, Fan P, Yu H. Exosomal microRNA-140-3p from human umbilical cord mesenchymal stem cells attenuates joint injury of rats with rheumatoid arthritis by silencing SGK1. Mol Med 2022;28:36.