DOI QR코드

DOI QR Code

NON-UNIFORM DEPENDENCE ON INITIAL DATA FOR THE FORNBERG-WHITHAM EQUATION IN C1(ℝ)

  • Yanghai Yu (School of Mathematics and Statistics Anhui Normal University)
  • Received : 2023.08.24
  • Accepted : 2024.01.26
  • Published : 2024.05.31

Abstract

It is shown in [1] that the Cauchy problem for the Fornberg-Whitham equation is well-posed in C1(ℝ) and the data-to-solution map is Hölder continuous from Cα to C([0, T]; Cα) with α ∈ [0, 1). In this short paper, we further show that the data-to-solution map of the Fornberg-Whitham equation is not uniformly continuous on the initial data in C1(ℝ).

Keywords

Acknowledgement

The author would like to thank the anonymous referees for valuable comments and suggestions which greatly improved the presentation of this paper and also thank Dr. Jinlu Li for helpful comments on a preliminary version of this work. Y. Yu is supported by National Natural Science Foundation of China (12101011).

References

  1. G. Burkhalter, R. C. Thompson, and M. Waldrep, Classical solutions of the Fornberg-Whitham equation, arXiv:2212.08159v1. 
  2. R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), no. 11, 1661-1664. https://doi.org/10.1103/PhysRevLett.71.1661 
  3. A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math. 51 (1998), no. 5, 475-504.  https://doi.org/10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
  4. A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math. 181 (1998), no. 2, 229-243. https://doi.org/10.1007/BF02392586 
  5. A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 3, 423-431. https://doi.org/10.1090/S0273-0979-07-01159-7 
  6. A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math. (2) 173 (2011), no. 1, 559-568. https://doi.org/10.4007/annals.2011.173.1.12 
  7. B. Fornberg and G. B. Whitham, A numerical and theoretical study of certain nonlinear wave phenomena, Philos. Trans. Roy. Soc. London Ser. A 289 (1978), no. 1361, 373-404. https://doi.org/10.1098/rsta.1978.0064 
  8. B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Backlund transformations and hereditary symmetries, Phys. D 4 (1981/82), no. 1, 47-66. https://doi.org/10.1016/0167-2789(81)90004-X 
  9. Y. Guo, The well-posedness, ill-posedness and non-uniform dependence on initial data for the Fornberg-Whitham equation in Besov spaces, Nonlinear Anal. Real World Appl. 70 (2023), Paper No. 103791, 18 pp. https://doi.org/10.1016/j.nonrwa.2022.103791 
  10. S. V. Haziot, Wave breaking for the Fornberg-Whitham equation, J. Differential Equations 263 (2017), no. 12, 8178-8185. https://doi.org/10.1016/j.jde.2017.08.037 
  11. A. A. Himonas and C. E. Kenig, Non-uniform dependence on initial data for the CH equation on the line, Differential Integral Equations 22 (2009), no. 3-4, 201-224.  https://doi.org/10.57262/die/1356019770
  12. A. A. Himonas, C. E. Kenig, and G. Misiolek, Non-uniform dependence for the periodic CH equation, Comm. Partial Differential Equations 35 (2010), no. 6, 1145-1162. https://doi.org/10.1080/03605300903436746 
  13. A. A. Himonas and G. Misiolek, High-frequency smooth solutions and well-posedness of the Camassa-Holm equation, Int. Math. Res. Not. 2005 (2005), no. 51, 3135-3151. https://doi.org/10.1155/IMRN.2005.3135 
  14. A. A. Himonas, G. Misiolek, and G. Ponce, Non-uniform continuity in H1 of the solution map of the CH equation, Asian J. Math. 11 (2007), no. 1, 141-150. https://doi.org/10.4310/AJM.2007.v11.n1.a13 
  15. J. M. Holmes, Well-posedness of the Fornberg-Whitham equation on the circle, J. Differential Equations 260 (2016), no. 12, 8530-8549. https://doi.org/10.1016/j.jde.2016.02.030 
  16. J. M. Holmes and R. C. Thompson, Well-posedness and continuity properties of the Fornberg-Whitham equation in Besov spaces, J. Differential Equations 263 (2017), no. 7, 4355-4381. https://doi.org/10.1016/j.jde.2017.05.019 
  17. G. Hormann, Wave breaking of periodic solutions to the Fornberg-Whitham equation, Discrete Contin. Dyn. Syst. 38 (2018), no. 3, 1605-1613. https://doi.org/10.3934/dcds.2018066 
  18. G. Hormann, Discontinuous traveling waves as weak solutions to the Fornberg-Whitham equation, J. Differential Equations 265 (2018), no. 7, 2825-2841. https://doi.org/10.1016/j.jde.2018.04.056 
  19. G. Hormann, Solution concepts, well-posedness, and wave breaking for the Fornberg-Whitham equation, Monatsh. Math. 195 (2021), no. 3, 421-449. https://doi.org/10.1007/s00605-020-01504-6 
  20. C. E. Kenig, G. Ponce, and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), no. 4, 527-620. https://doi.org/10.1002/cpa.3160460405 
  21. D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. (5) 39 (1895), no. 240, 422-443. https://doi.org/10.1080/14786449508620739 
  22. J. Li, X. Wu, Y. Yu, and W. Zhu, Norm inflation and ill-posedness for the Fornberg-Whitham equation, J. Differential Equations 368 (2023), 301-316. https://doi.org/10.1016/j.jde.2023.06.005 
  23. P. I. Naumkin and I. A. Shishmarev, Nonlinear nonlocal equations in the theory of waves, translated from the Russian manuscript by Boris Gommerstadt, Translations of Mathematical Monographs, 133, Amer. Math. Soc., Providence, RI, 1994. https://doi.org/10.1090/mmono/133 
  24. L. Wei, Wave breaking analysis for the Fornberg-Whitham equation, J. Differential Equations 265 (2018), no. 7, 2886-2896. https://doi.org/10.1016/j.jde.2018.04.054 
  25. L. Wei, New wave-breaking criteria for the Fornberg-Whitham equation, J. Differential Equations 280 (2021), 571-589. https://doi.org/10.1016/j.jde.2021.01.041 
  26. G. Whitham, Variational methods and applications to water waves, Proc. R. Soc., Math. Phys. Eng. Sci. 299 (1967), 6-25. 
  27. X. Wu and Z. Zhang, On the blow-up of solutions for the Fornberg-Whitham equation, Nonlinear Anal. Real World Appl. 44 (2018), 573-588. https://doi.org/10.1016/j.nonrwa.2018.06.004 
  28. S. Yang, Wave breaking phenomena for the Fornberg-Whitham equation, J. Dynam. Differential Equations 33 (2021), no. 4, 1753-1758. https://doi.org/10.1007/s10884-020-09866-z 
  29. J. Yin, L. Tian, and X. H. Fan, Classification of travelling waves in the Fornberg-Whitham equation, J. Math. Anal. Appl. 368 (2010), no. 1, 133-143. https://doi.org/10.1016/j.jmaa.2010.03.037