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NON-UNIFORM DEPENDENCE ON INITIAL DATA FOR

THE FORNBERG–WHITHAM EQUATION IN C1(R)

Yanghai Yu

Abstract. It is shown in [1] that the Cauchy problem for the Fornberg–
Whitham equation is well-posed in C1(R) and the data-to-solution map is

Hölder continuous from Cα to C([0, T ];Cα) with α ∈ [0, 1). In this short

paper, we further show that the data-to-solution map of the Fornberg–
Whitham equation is not uniformly continuous on the initial data in

C1(R).

1. Introduction

In this paper, we focus on the Cauchy problem of the Fornberg–Whitham
(FW) equation{

ut − uxxt + 3
2uux − 9

2uxuxx − 3
2uuxxx − ux = 0, (x, t) ∈ R× R+,

u(x, t = 0) = u0(x), x ∈ R,
(1)

which was first introduced by Whitham [26] in 1967 and Fornberg and Whitham
[7] in 1978, as a shallow water wave model to study the qualitative behaviors
of wave breaking (the solution remains bounded while its slope becomes un-
bounded in finite time). The FW equation was compared with the famous
Korteweg-de Vries (KdV) equation [21]

ut + 6uux = −uxxx,
and the classical Camassa-Holm (CH) equation [2–6,8]

ut − uxxt + 3uux = 2uxuxx + uuxxx.

The KdV equation admits solitons or solitary traveling wave solutions. In-
deed, the KdV equation in the non-periodic admits the solitary wave solutions

with the form u(t, x) = c
2 sech2

(√
c
2 (x − ct)

)
. And, the CH equation possess

exact peaked soliton solutions (peakons) of the form u(t, x) = ce−|x−ct|. It
is interesting that the FW equation does not only admit solitary traveling
wave solutions like the KdV equation, but also possess peakon solutions (or
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peaked traveling wave solutions) [26] as the CH equation which are of the form

u(t, x) = 8
9e

− 1
2 |x−

4
3 t|. In [20], the KdV equation is shown to be well-posed in

Hs(R) with s > −3/4, then the solution map is Lipschitz on the same Hs(R).
For the CH equation, Himonas-Misio lek [13] obtained the first result on the
non-uniform dependence in Hs(T) with s ≥ 2 using explicitly constructed trav-
elling wave solutions, which was sharpened to s > 3

2 by Himonas-Kenig [11] on
the real-line and Himonas-Kenig-Misio lek [12] on the circle. We should men-
tion that, non-uniform continuity of the CH solution map in H1(R or T) was
established by Himonas-Misio lek-Ponce [14] by using traveling wave solutions.

The FW equation (1) admits the conserved quantities [23]

E1(u) =

∫
R
udx, E2(u) =

∫
R
u2dx, E3(u) =

∫
R

(
u
(
1 − ∂2x

)−1
u− u3

)
dx.

A classification of other traveling wave solutions of the FW equation was
presented by Yin, Tian and Fan [29]. It’s worth mentioning that the KdV
equation and CH equation are integrable, and they possess infinitely many
conserved quantities, an infinite hierarchy of quasi-local symmetries, a Lax
pair and a bi-Hamiltonian structure. Unlike the KdV and CH equation, the
FW equation is not integrable. Although the FW equation is in a simple form,
the only useful conservation law we know so far is ∥u∥L2 . Therefore, the anal-
ysis of the FW equation would be somewhat more difficult due to the special
structure of this equation and the lower regularity of the conservation law.
Particularly, the well-posedness theory for the FW equation is not completely
understood. Before recalling the well-posedness results the FW equation, we
firstly transform the FW equation (1) equivalently into the following non-local
form

(2)

{
∂tu+ 3

2u∂xu = P(u) = ∂x
(
1 − ∂2x

)−1
u, (x, t) ∈ R× R+,

u(x, t = 0) = u0(x), x ∈ R.

By the Galerkin approximation argument, Holmes [15] proved the well-
posed of the FW equation in Sobolev spaces Hs(T) with s > 3/2. Holmes
and Thompson [16] obtained the well-posedness of the FW equation in Besov
spaces Bs

2,r(R or T) (s > 3/2, 1 < r < ∞ or s = 3/2, r = 1). They also proved
that the data-to-solution map is not uniformly continuous but Hölder contin-
uous in some given topology and presented a blow-up criterion for solutions.
Later, Haziot [10], Hörmann [17,19], Wei [24,25], Wu-Zhang [27] and Yang [28]
sharpened this blowup criterion and presented the sufficient conditions about
the initial data to lead the wave-breaking phenomena of the FW equation.
The discontinuous traveling waves as weak solutions to the FW equation were
investigated in [18]. Recently, Guo [9] established the local well-posedness
(existence, uniqueness and continuous dependence) for the FW equation in
both supercritical Besov spaces Bs

p,r with s > 1 + 1/p, (p, r) ∈ [1,∞] × [1,∞]

and critical Besov spaces B
1+1/p
p,1 with p ∈ [1,∞). Furthermore, Guo [9]

proved the data-to-solution is not uniformly continuous dependence on the
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initial data in the Besov spaces Bs
p,r with s > 1 + 1/p, (p, r) ∈ [1,∞] × [1,∞)

and critical Besov spaces B
1+1/p
p,1 with p ∈ [1,∞). Li-Wu-Yu-Zhu [22] proved

that the Cauchy problem for the FW equation is ill-posed in Bs
p,r(R) with

(s, p, r) ∈ (1, 1 + 1/p) × [2,∞) × [1,∞] or (s, p, r) ∈ {1} × [2,∞) × [1, 2] by
showing norm inflation phenomena of the solution for some special initial data.

Very recently, Burkhalter-Thompson-Waldrep [1] proved that the Cauchy
problem for the FW equation is well-posed in C1(R). Meanwhile, they also ob-
tained the data-to-solution map is Hölder continuous from Cα to C([0, T ];Cα)
with α ∈ [0, 1). Naturally, we would like to ask that whether or not the above
Hölder continuous can be improved to be Lipschitz continuous. Our answer is
Not. More precisely, we shall prove that the data-to-solution map u0 7→ St(u0)
to the FW equation as function of the initial data is not uniformly continuous
on the initial data in C1(R). From the PDE’s point of view, it is crucial to
know if an equation which models a physical phenomenon is well-posed in the
Hadamard’s sense: existence, uniqueness, and continuous dependence of the
solutions with respect to the initial data. In particular, continuity properties
of the solution map is an important part of the well-posedness theory since the
lack of continuous dependence would cause incorrect solutions or non meaning-
ful solutions. Furthermore, the non-uniform continuity of data-to-solution map
suggests that the local well-posedness cannot be established by the contraction
mappings principle since this would imply Lipschitz continuity for the solution
map.

Now, we can formulate the main result.

Theorem 1.1. Denote UR ≡
{
u0 ∈ C1(R) : ∥u0∥C1 ≤ R

}
for any R > 0.

Then the data-to-solution map of the Cauchy problem (2)

St :

{
UR → C([0, T ];C1) ∩ C1([0, T ];C),

u0 7→ St(u0),

is not uniformly continuous from any bounded subset UR in C1 into C([0, T ];C1).
More precisely, there exists two sequences of solutions St(fn + gn) and St(fn)
such that

∥fn∥C1 ≲ 1 and lim
n→∞

∥gn∥C1 = 0

but

lim inf
n→∞

∥St(fn + gn) − St(fn)∥C1 ≳ t, ∀ t ∈ [0, T0],

with small time T0.

Remark 1.2. Compared with the result in [9] where the regularity s > 1 is
required, our theorem holds for the lower regularity s = 1.

Remark 1.3. The method we used in proving Theorem 1.1 is very general
and can be applied equally well to other related system with the simple lower
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nonlinear term, such as the Degasperis-Procesi equation{
∂tu+ u∂xu = − 3

2∂x
(
1 − ∂2x

)−1
u2, (x, t) ∈ R× R+,

u(x, t = 0) = u0(x), x ∈ R.

Organization of our paper. In Section 2, we establish some technical lemmas
which will be used in the sequel. In Section 3, we prove Theorem 1.1.
Notations. Given a Banach space X, we denote its norm by ∥ · ∥X . For
I ⊂ R, we denote by C(I;X) the set of continuous functions on I with values
in X. The symbol a ≲ (≳)b means that there is a uniform positive constant C
independent of a and b such that a ≤ (≥)Cb. a ≈ b means that a ≲ b and a ≳ b.
We let C1(R) be the Banach space of bounded and continuously differentiable
functions which are equipped with the norm ∥f∥C1 = ∥f∥L∞ + ∥∂xf∥L∞ with
∥f∥L∞ = supx∈R |f(x)|. We use S(R) and S ′(R) to denote Schwartz functions
and the tempered distributions spaces on R, respectively. Let us recall that
for all u ∈ S ′, the Fourier transform Fu, also denoted by û, is defined by
Fu(ξ) = û(ξ) =

∫
R e

−ixξu(x)dx for any ξ ∈ R. The inverse Fourier transform

of any g is given by (F−1g)(x) = 1
2π

∫
R g(ξ)eix·ξdξ.

2. Preliminary lemmas

In this section, we establish some useful lemmas.

Lemma 2.1. Let u0 ∈ C1(R). Assume that u ∈ L∞([0, T ];C1(R)) solves (2).
Then for all t ∈ (0,min{1, 1/(4∥∂xu0∥L∞)}], we have

∥u(t)∥L∞(R) ≤ 3∥u0∥L∞(R),(3)

∥∂xu(t)∥L∞(R) ≤ 2(1 + ∥∂xu0∥L∞(R)).(4)

Proof. From now on, we set ux = ∂xu for simplicity. Given a Lipschitz velocity
field u, we may solve the following ODE to find the flow induced by u:{

d
dtψ(t, x) = 3

2u(t, ψ(t, x)),

ψ(0, x) = x.
(5)

From (2), we get that

d

dt
u(t, ψ(t, x)) = ut(t, ψ(t, x)) + ux(t, ψ(t, x))

d

dt
ψ(t, x)

=

(
ut +

3

2
uux

)
(t, ψ(t, x))

=
(
∂x

(
1 − ∂2x

)−1
u
)

(t, ψ(t, x)).

Integrating the above with respect to time variable yields that

u(t, ψ(t, x)) = u0(x) +

∫ t

0

(
∂x

(
1 − ∂2x

)−1
u
)

(τ, ψ(τ, x))dτ.
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Using the fact that the L∞-norm of any function is preserved under the flow
ψ, then we have

∥u(t, x)∥L∞ = ∥u(t, ψ(t, x))∥L∞ ≤ ∥u0(x)∥L∞ +

∫ t

0

∥u(τ, x)∥L∞dτ,(6)

where we have used the following estimate:∥∥∥∂x (1 − ∂2x
)−1

f
∥∥∥
L∞

= ∥∂xG ∗ f∥L∞ ≤ ∥f∥L∞ where G(x) =
1

2
e−|x|.

Using Gronwall’s inequality to (6), we get (3).
Applying ∂x to (2) yields

utx +
3

2
uuxx = −3

2
(ux)2 + ∂2x

(
1 − ∂2x

)−1
u.(7)

Combining (5) and (7), we obtain

d

dt
ux(t, ψ(t, x)) = utx(t, ψ(t, x)) + uxx(t, ψ(t, x))

d

dt
ψ(t, x)

=

(
utx +

3

2
uuxx

)
(t, ψ(t, x))

= −
(

3

2
(ux)2 − ∂2x

(
1 − ∂2x

)−1
u

)
(t, ψ(t, x)),(8)

which means that

ux(t, ψ(t, x)) = ∂xu0(x) −
∫ t

0

(
3

2
(ux)2 − ∂2x

(
1 − ∂2x

)−1
u

)
(τ, ψ(τ, x))dτ.

Notice that the L∞-norm of any function is preserved under the flow ψ again,
we have

∥ux(t, x)∥L∞ ≤ ∥∂xu0∥L∞ +
3

2

∫ t

0

∥ux(τ, x)∥2L∞ dτ

+

∫ t

0

∥∥∥∂x (1 − ∂2x
)−1

ux(τ, x)
∥∥∥
L∞

dτ

≤ ∥∂xu0∥L∞ + 2

∫ t

0

(
∥ux(τ, x)∥2L∞ + ∥ux(τ, x)∥L∞

)
dτ.(9)

By Gronwall’s inequality, we get

∥ux(t)∥L∞ ≤ ∥∂xu0∥L∞ exp

(
2

∫ t

0

(1 + ∥ux(τ)∥L∞) dτ

)
.(10)

Setting

λ(t) := ∥∂xu0∥L∞ exp

(
2

∫ t

0

(1 + ∥ux(τ)∥L∞) dτ

)
with λ(0) := ∥∂xu0∥L∞ ,

then from (10), one has

d

dt
λ(t) ≤ 2(1 + λ(t))2 ⇔ − d

dt

(
1

1 + λ(t)

)
≤ 2.
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Solving the above directly yields for t ∈ (0,min{1, 1/(4∥∂xu0∥L∞)}]

sup
τ∈[0,t]

∥ux(τ)∥L∞ ≤ 1 + ∥∂xu0∥L∞

1 − 2t∥∂xu0∥L∞
≤ 2(1 + ∥∂xu0∥L∞).

This completes the proof of Lemma 2.1. □

Lemma 2.2. Assume that u0 ∈ S and ∥∂xu0∥L∞ ≲ 1. The data-to-solution
map u0 7→ St(u0) of the Cauchy problem (2) satisfies that for t ∈ (0, 1]

∥St(u0) − u0∥L∞ ≤ Ct∥u0∥L∞ ,(11)

∥∂x (St(u0) − u0) ∥L∞ ≤ Ct
(
1 + ∥u0∥L∞∥∂2xu0∥L∞

)
,(12)

∥∂2x (St(u0) − u0) ∥L∞ ≤ Ct
(
∥u0∥L∞∥∂3xu0∥L∞ + ∥∂2xu0∥L∞

)
.(13)

Proof. By Lemma 2.1, we know that the solution map St(u0) ∈ C([0, T ];C1)
and has common lifespan T ≈ 1. Moreover, there holds

∥St(u0)∥L∞
T (L∞) ≲ ∥u0∥L∞ and ∥∂xSt(u0)∥L∞

T (L∞) ≲ 1.

By the fundamental theorem of calculus in the time variable, we have

∥St(u0) − u0∥L∞ ≤
∫ t

0

∥∂τSτ (u0)∥L∞dτ

≤
∫ t

0

∥Sτ (u0)∂xSτ (u0)∥L∞dτ

+

∫ t

0

∥∂x(1 − ∂2x)−1 (Sτ (u0)) ∥L∞dτ

≲
∫ t

0

∥Sτ (u0)∥L∞ (∥∂xSτ (u0)∥L∞ + 1) dτ

≲ t∥u0∥L∞ (1 + ∥∂xu0∥L∞) ≲ t∥u0∥L∞ .

Setting v = ∂x (St(u0) − u0) and u(t) = St(u0), then from (7), we deduce

(14)

{
∂tv + 3

2u∂xv = − 3
2u∂

2
xu0 − 3

2 (∂xu)2 + ∂2x(1 − ∂2x)−1u,

v(x, t = 0) = 0.

By identical reasoning to (9), we have

∥v(t)∥L∞ ≤
∫ t

0

∥∥∥∥3

2
u∂2xu0 +

3

2
(∂xu)2 − ∂2x(1 − ∂2x)−1u

∥∥∥∥
L∞

dτ

≤ Ct
(
1 + ∥u0∥L∞∥∂2xu0∥L∞

)
.

Setting w = ∂2x (St(u0) − u0), then from (14), we deduce

(15)

{
∂tw + 3

2u∂xw = − 3
2u∂

3
xu0 − 9

2∂xu∂
2
xu+ ∂3x(1 − ∂2x)−1u,

w(x, t = 0) = 0.
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By identical reasoning to (9), we have

∥w(t)∥L∞ ≤
∫ t

0

∥∥∥∥3

2
u∂3xu0 +

9

2
∂xu∂

2
xu− ∂3x(1 − ∂2x)−1u

∥∥∥∥
L∞

dτ

≤ Ct
(
∥u0∥L∞∥∂3xu0∥L∞ + ∥∂2xu0∥L∞

)
,

which implies (13). This completes the proof of Lemma 3.1. □

3. Proof of Theorem 1.1

We need to introduce smooth, radial cut-off functions to localize the fre-

quency region. Precisely, let ϕ̂ ∈ C∞
0 (R) be an even, real-valued and non-

negative function on R and satisfy

ϕ̂(ξ) =

{
1, if |ξ| ≤ 1

4 ,

0, if |ξ| ≥ 1
2 .

By the Fourier version formula and the Fubini theorem, we see that

∥ϕ∥L∞ = sup
x∈R

1

2π

∣∣∣∣∫
R
ϕ̂(ξ) cos(xξ)dξ

∣∣∣∣ ≤ 1

2π

∫
R
ϕ̂(ξ)dξ

and

ϕ(0) =
1

2π

∫
R
ϕ̂(ξ)dξ > 0.

We establish the following crucial lemmas which will be used later on.

Lemma 3.1. Define the high-low frequency functions fn and gn by

fn = 2−nϕ(x) cos (2nx) and gn = 2−nϕ(x), n≫ 1.

Then there exists a positive constant C = C(ϕ) such that

∥fn∥L∞ + ∥gn∥L∞ + ∥∂xgn∥L∞ + ∥∂2xgn∥L∞ ≤ C2−n,(16)

∥∂xfn∥L∞ ≤ C, ∥∂2xfn∥L∞ ≤ C2n,(17)

lim inf
n→∞

∥gn∂xfn∥C1 ≥ C.(18)

Proof. It is easy to obtain that

∂xfn = −ϕ(x) sin (2nx) + 2−nϕ′(x) cos (2nx) ,

∂2xfn = −2nϕ(x) cos (2nx) − 2ϕ′(x) sin (2nx) + 2−nϕ′′(x) cos (2nx) .

Thus (16) and (17) are obvious. Also,

gn∂
2
xfn = −ϕ2(x) cos (2nx)︸ ︷︷ ︸

=:I1

− 21−nϕ(x)ϕ′(x) sin (2nx)︸ ︷︷ ︸
=:I2

+ 2−2nϕ(x)ϕ′′(x) cos (2nx)︸ ︷︷ ︸
=:I3

.

Then

∥I1∥L∞ ≥ ϕ2(0),
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∥I2∥L∞ + ∥I3∥L∞ ≤ C2−n,

which implies that

∥gn∂2xfn∥L∞ ≥ ϕ2(0) − C2−n.(19)

Obviously,

∥gn∂xfn∥L∞ + ∥∂xgn∂xfn∥L∞ ≤ C2−n.

Using the above estimates and the inverse triangle inequality, we obtain the
desired (18) and finish the proof of Lemma 3.1. □

To obtain the non-uniformly continuous dependence property for the FW
equation, we need to prove the following crucial proposition.

Proposition 3.2. Assume that u0 ∈ S and ∥∂xu0∥L∞ ≲ 1. Then the data-to-
solution map u0 7→ St(u0) of the Cauchy problem (2) satisfies that for t ∈ (0, 1]∥∥∥∥St(u0) − u0 +

3

2
tu0∂xu0

∥∥∥∥
C1

≲ E(u0)t2 + ∥u0∥L∞ ,

where we denote

E(u0) = ∥u0∥L∞
(
1 + ∥u0∥L∞∥∂3xu0∥L∞ + ∥∂2xu0∥L∞

)
+ (1 + ∥u0∥L∞)

(
1 + ∥u0∥L∞∥∂2xu0∥L∞

)
.

Proof. By the fundamental theorem of calculus in the time variable, from (2),
we have∥∥∥∥St(u0) − u0 +

3

2
tu0∂xu0

∥∥∥∥
C1

≤
∫ t

0

∥∥∥∥∂τSτ (u0) +
3

2
u0∂xu0

∥∥∥∥
C1

dτ

≤ 3

2

∫ t

0

∥Sτ (u0)∂xSτ (u0) − u0∂xu0∥C1dτ

+

∫ t

0

∥∥∥∂x (1 − ∂2x
)−1

Sτ (u0)
∥∥∥
C1

dτ.(20)

Using the following estimates

∥Sτ (u0)∂xSτ (u0) − u0∂xu0∥C1

≲ ∥(Sτ (u0) − u0)∂xSτ (u0)∥C1 + ∥u0∂x(Sτ (u0) − u0)∥C1

≲ ∥Sτ (u0) − u0∥L∞(∥∂xu0∥L∞ + ∥∂2xu0∥L∞)

+ (∥u0∥L∞ + ∥∂xu0∥L∞)∥∂x(Sτ (u0) − u0)∥L∞

+ ∥u0∥L∞∥∂2x(Sτ (u0) − u0)∥L∞ ≲ τE(u0)

and∥∥∥∂x (1 − ∂2x
)−1

Sτ (u0)
∥∥∥
C1

≲ ∥∂xG ∗ Sτ (u0)∥L∞ ≲ ∥Sτ (u0)∥L∞ ≲ ∥u0∥L∞ ,

then combining (20), we complete the proof of Proposition 3.2. □
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With Proposition 3.2 in hand, we can prove Theorem 1.1.
We set un0 = fn+gn and compare the solution St(u

n
0 ) and St(fn). Obviously,

we have

∥un0 − fn∥C1 = ∥gn∥C1 ≤ C2−n ⇒ lim
n→∞

∥un0 − fn∥C1 = 0.

Notice that

St(fn + gn︸ ︷︷ ︸
=un

0

) = St(u
n
0 ) − un0 + tun0∂xu

n
0︸ ︷︷ ︸

= I1(un
0 )

+fn + gn − tun0∂xu
n
0 ,

St(fn) = St(fn) − fn + tfn∂xfn︸ ︷︷ ︸
= I2(fn)

+fn − tfn∂xfn and

un0∂xu
n
0 − fn∂xfn = gn∂xfn + un0∂xgn,

using the triangle inequality and Proposition 3.2, we deduce that

∥St(fn + gn) − St(fn)∥C1

= ∥I1(un0 ) − I2(fn) + gn − t
(
gn∂xfn + un0∂xgn

)
∥C1

≥ t∥gn∂xfn∥C1 − t∥un0∂xgn∥C1 − ∥I1(un0 )∥C1 − ∥I2(fn)∥C1 − ∥gn∥C1

≥ t∥gn∂xfn∥C1 − C2−n − C∥I1(un0 )∥C1 − C∥I2(fn)∥C1 ,(21)

where we have used

∥un0∂xgn∥C1 ≲ ∥un0∥C1∥∂xgn∥C1 ≲ 2−n.

Using Proposition 3.2 with u0 = fn and u0 = fn + gn, respectively, and by
Lemma 3.1, we obtain

∥I1(fn + gn)∥C1 + ∥I2(fn)∥C1 ≲ t2 + 2−n.(22)

Then (21) reduces to

lim inf
n→∞

∥St(fn + gn) − St(fn)∥C1 ≥ t lim inf
n→∞

∥gn∂xfn∥C1 − Ct2.(23)

Hence, it follows from (23) and Lemma 3.1 that

lim inf
n→∞

∥St(fn + gn) − St(fn)∥C1 ≳ t for t small enough.

This completes the proof of Theorem 1.1. □

Finally, we present another proposition which can be directly lead to the non-
uniformly continuous dependence property for the FW equation. We should
mention that, the norm of solution in L∞ can be bounded by the norm of initial
data in L∞ is the key ingredient of our analysis in Propositions 3.2 and 3.3.

Proposition 3.3. Let fn and gn be given in Lemma 3.1. Then the difference
between the data-to-solution maps fn + gn 7→ St(fn + gn) and fn 7→ St(fn) of
the Cauchy problem (2) satisfies that for n≫ 1 and 0 < t≪ 1

∥St(fn + gn) − St(fn)∥C1 ≈ t.
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Proof. From now on, we set Xt := St(fn+gn)−St(fn)−gn. By the fundamental
theorem of calculus in the time variable, from (2), we have

Xt =

∫ t

0

∂τ (Sτ (fn + gn) − Sτ (fn))dτ

= −3

2

∫ t

0

Sτ (fn + gn)∂xSτ (fn + gn) − Sτ (fn)∂xSτ (fn)dτ

+

∫ t

0

P(Sτ (fn + gn) − Sτ (fn))dτ

= −3

2

∫ t

0

Xτ∂xSτ (fn + gn) + Sτ (fn)∂xXτdτ

− 3

2

∫ t

0

gn∂xSτ (fn + gn) + Sτ (fn)∂xgndτ

+

∫ t

0

P(Sτ (fn + gn) − Sτ (fn))dτ(24)

= −3

2

∫ t

0

Xτ∂xSτ (fn + gn) + Sτ (fn)∂xXτdτ

− 3

2
gn

∫ t

0

∂x(Sτ (fn + gn) − (fn + gn))dτ

− 3

2
∂xgn

∫ t

0

Sτ (fn)dτ − 3

2
tgn∂x(fn + gn)

+

∫ t

0

P(Sτ (fn + gn) − Sτ (fn))dτ.(25)

From (24), using the triangle inequality, one has

2n ∥Xt∥L∞ + ∥∂xXt∥L∞ + 2−n
∥∥∂2xXt

∥∥
L∞

≲
∫ t

0

(
2n ∥Xτ∥L∞ + ∥∂xXτ∥L∞ + 2−n

∥∥∂2xXτ

∥∥
L∞

)
dτ + t,

from which, we deduce that

2n ∥Xt∥L∞ + ∥∂xXt∥L∞ + 2−n
∥∥∂2xXt

∥∥
L∞ ≲ t.(26)

From (25), using the inverse triangle inequality, one has

∥∂xXt∥L∞ ≥ 3

2
t∥∂x(gn∂xfn)∥L∞ − C2−nt

−
∫ t

0

(
2n ∥Xτ∥L∞ + ∥∂xXτ∥L∞ + 2−n

∥∥∂2xXτ

∥∥
L∞

)
dτ

− 2−n

∫ t

0

∥∂2x(Sτ (fn + gn) − (fn + gn))∥L∞dτ

≥ 3

2
t∥gn∂2xfn∥L∞ − C2−nt− t2.
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Thus, due to (26), (19), and (13), for n≫ 1 and 0 < t≪ 1, we obtain

∥∂xXt∥L∞ ≳ t.(27)

Combining (26) and (27) yields the proof of Proposition 3.3. □
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