DOI QR코드

DOI QR Code

리튬 이온 전지용 음극으로서의 Si@C/rGO의 합성

Si@C/rGO Composite Anode Material for Lithium Ion Batteries

  • 김채현 (순천향대학교 에너지공학과) ;
  • 김성훈 (순천향대학교 에너지공학과) ;
  • 안욱 (순천향대학교 에너지공학과)
  • Chaehyun Kim (Department of Energy Engineering, Soon Chun Hyang University) ;
  • Sung Hoon Kim (Department of Energy Engineering, Soon Chun Hyang University) ;
  • Wook Ahn (Department of Energy Engineering, Soon Chun Hyang University)
  • 투고 : 2024.03.20
  • 심사 : 2024.04.12
  • 발행 : 2024.05.31

초록

화석 연료의 사용이 증가함에 따라 이산화탄소와 같은 온실 가스의 배출량이 함께 증가하며 발생하는 환경 문제의 해결을 위해 이차전지와 같은 친환경 에너지 저장 기술이 주목받고 있다. 리튬 이온 전지의 중대형 전지를 제작하기 위해서는 고용량과 고효율 뿐만 아니라 우수한 안정성을 지니는 배터리의 전극 소재의 개발이 필수적이다. 이를 위해 고분자의 합성을 토대로 고용량을 얻을 수 있는 실리콘과 합성한 후 reduced Graphene Oxide (rGO)를 첨가하여 전극 활 물질을 제조해 물리적 특성과 전기화학적 성능을 분석하였다. 제조한 전극은 실리콘에 고분자를 탄화시켜 코팅하고 기계적 강도와 높은 안정성을 보이는 rGO를 첨가해 실리콘에 탄소를 코팅하는 Si@C 복합체에 비해 개선된 용량과 향상된 안정성을 보이는 것을 확인했다.

As the use of fossil fuels has gradually increased, so has the emission of greenhouse gases such as carbon dioxide, leading to environmental problems. As a result, lithium-ion batteries (LiB) have emerged as the solution to this issue. To manufacture medium to large-sized lithium-ion batteries (LiB), it requires electrodes with high capacity and fast charging capabilities. Silicon (Si) is considered a next-generation anode with high-capacity properties, so, reduced graphene oxide (rGO) was compounded with Si@resorcinol-formaldehyde resin (RF) composite to prevent the volume expansion of Si. It was confirmed that the composite anode prepared exhibited improved capacity and enhanced stability.

키워드

과제정보

This result was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-004), and also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2020R1C1C1010493).

참고문헌

  1. M. A. Rahman, G. Song, A. I, Bhatt, Y. C. Wong, and C. Wen, Nanostructured silicon anodes for high-performance lithium-ion batteries, Adv. Funct. Mater., 26(5), 647-678 (2016).
  2. H. Kim, H. Kim, Z. Ding, M. H. Lee, K. Lim, G. Yoon, and K. Kang, Recent progress in electrode materials for sodium-ion batteries, Adv. Energy Mater., 6(19), 1600943 (2016).
  3. D. Lin, Y. Lin, and Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nature Nanotech., 12(3), 194-206 (2017).
  4. N. Kim, C. Oh, J. Kim, J.-S. Kim, E. D. Jeong, J.-S. Bae, T. E. Hong, and J. K. Lee, High-performance Li-ion battery anodes based on silicon-graphene self-assemblies, J. Electrochem. Soc., 164(1), A6075 (2016).
  5. Z. Liu, P. Guo, B. Liu, W. Xie, and D. He, Carbon-coated Si nanoparticles/reduced graphene oxide multilayer anchored to nanostructured current collector as lithiumion battery anode, Appl. Surf. Sci., 396, 41-47 (2017).
  6. T. M. Higgins, S.-H. Park, P. J. King, C. Zhang, N. McEvoy, N. C. Berner, D. Daly, A. Shmeliov, U. Khan, G. Duesberg, V. Nicolosi, and J. N. Coleman, A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes, ACS Nano, 10(3), 3702-3713 (2016).
  7. L. Wei, Z. Hou, and H. Wei, Porous sandwiched graphene/silicon anodes for lithium storage, Electrochim. Acta, 229, 445-451 (2017).
  8. T. Chen, J. Wu, Q. Zhang, and X. Su, Recent advancement of SiOx based anodes for lithium-ion batteries, J. Power Sources, 363, 126-144 (2017).
  9. H. Kim, T. H. Kim, and J. H. Ryu, Improvement of cycle performance of graphite-silicon monoxide mixture negative electrode in lithium-ion batteries, J. Korean Electrochem. Soc., 22(4), 155-163 (2019).
  10. N.-S. Choi, S.-Y. Ha, Y. Lee, J. Y. Jang, M.-H. Jeong, W. C. Shin, and M. Ue, Recent progress on polymeric binders for silicon anodes in lithium-ion batteries, J. Electrochem. Sci. Technol., 6(2), 35-49 (2015).
  11. H. S. Jeon and J. H. Ryu, Improved cycle performance of high-capacity SiOx negative electrodes with carbon nanotube conducting agents for lithium-ion batteries, J. Korean Electrochem. Soc., 26(3), 35-41 (2023).
  12. G. Zhoa, X. Li, M. Huang, Z. Zhen, Y. Zhong, Q. Chen, X. Zhao, Y. He, R. Hu, T. Yang, R. Zhang, C. Li, J. Kong, J. B. Xu, R. S. Ruoff, and H. Zhu, The physics and chemistry of graphene-on-surfaces, Chem. Soc. Rev., 46(15), 4417-4449 (2017).
  13. T. K. Pham, J. H. Shin, N. C. Karima, Y. S. Jun, S.-K. Jeong, N. C. Cho, Y.-W. Lee, Y. H. Cho, S. N. Lim, and W. Ahn, Application of recycled Si from industrial waste towards Si/rGO composite material for long lifetime lithium-ion battery, J. Power Sources, 506, 230244 (2021).
  14. D. Ji, Y. Wan, Z. Y, C, Li, G. Xiong, L. Li, M. Han, R. Guo, and H. Luo, Nitrogen-doped graphene enwrapped silicon nanoparticles with nitrogen-doped carbon shell: a novel nanocomposite for lithium-ion batteries, Electrochim. Acta, 192, 22-29 (2016).
  15. R. Hu, W. Sun, Y. Chen, M. Zeng, and M. Zhu, Silicon/graphene based nanocomposite anode: large-scale production and stable high capacity for lithium ion batteries, J. Mater. Chem. A, 2(24), 9118-9125 (2014).
  16. M. T. McDowell, S. W. Lee, W. D. Nix, and Y. Cui, 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries, Adv. Mater., 25(36), 4966-4985 (2013).
  17. B. Li, F. Yao, J. J. Bae, J. Chang, M. R. Zamfir, D. T. Pham, H. Yue, and Y. H. Lee, Hollow carbon nanospheres/silicon/alumina core-shell film as an anode for lithium-ion batteries, Sci. Rep., 5(1), 7659 (2015).
  18. M. Tokur, H. Algul, S. Ozcan, T. Cetinkaya, M. Uysal, and H. Akbulut, Closing to scaling-up high reversible Si/rGO nanocomposite anodes for lithium ion batteries, Electrochim. Acta, 216, 312-319 (2016).
  19. W. Sun, L. Wan, X. Li, X. Zhao, and X. Yan, Bean pod-like Si@dopamine-derived amorphous carbon@N-doped graphene nanosheet scrolls for high performance lithium storage, J. Mater. Chem. A, 4(28), 10948-10955 (2016).
  20. L. Fei, B. P. Williams, S. H. Yoo, J. Kim, G. Shoorideh, and Y. L. Joo, Graphene folding in Si rich carbon nanofibers for highly stable, high capacity Li-ion battery anodes, ACS Appl. Mater. Interfaces, 8(8), 5243-5250 (2016).