참고문헌
- A. Manthiram, A reflection on lithium-ion battery cathode chemistry, Nat. Commun., 11, 1550 (2020).
- M. J. Kim and J. H. Ryu, Impact of drying temperature in high-loading positive electrode fabrication process for lithium-ion batteries, J. Korean Electrochem. Soc., 27(1), 40-46 (2024).
- T. Kim, W. Song, D.-Y. Son, L. K. Ono, and Y. Qi, Lithium-ion batteries: outlook on present, future, and hybridized technologies, J. Mater. Chem. A, 7, 2942-2964 (2019). https://doi.org/10.1039/C8TA10513H
- H. S. Jeon and J. H. Ryu, Improved cycle performance of high-capacity SiOx negative electrodes with carbon nanotube conducting agents for lithium-ion batteries, J. Korean Electrochem. Soc., 26(3), 35-41 (2023).
- Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim, J. Wang, J. Koettgen, Y. Sun, B. Ouyang, T. Chen, Z. Lun, Z. Rong, K. Persson, and G. Ceder, Promises and challenges of next-generation "Beyond Li-ion" batteries for electric vehicles and grid decarbonization, Chem. Rev., 121(3), 1623-1669 (2021). https://doi.org/10.1021/acs.chemrev.0c00767
- Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, and B. Li, A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards, J. Energy Chem., 59, 83-99 (2021). https://doi.org/10.1016/j.jechem.2020.10.017
- Tesla fire accident. https://www.tesla-fire.com/
- D. Ren, X. Feng, L. Liu, H. Hsu, L. Lu, L. Wang, X. He, and M. Ouyang, Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition, Energy Storage Mater., 34, 563-573 (2021).
- L. Li, X. Zhou, X. Ju, Z. Zhou, B. Wang, B. Cao, and L. Yang, Comprehensive analysis on aging behavior and safety performance of LiNixCoyMnzO2/graphite batteries after slight over-discharge cycle, Appl. Therm. Eng., 225, 120172 (2023).
- G. Zhang, X. Wei, S. Chen, J. Zhu, G. Han, and H. Dai, Unlocking the thermal safety evolution of lithium-ion batteries under shallow over-discharge, J. Power Sources, 521, 230990 (2022).
- H. Zhou, C. Fear, J. A. Jeevarajan, and P. P. Mukherjee, State-of-electrode (SOE) analytics of lithium-ion cells under overdischarge extremes, Energy Storage Mater., 54, 60-74 (2023). https://doi.org/10.1016/j.ensm.2022.10.024
- W. Gao, X. Li, M. Ma, Y. Fu, J. Jiang, and C. Mi, Case study of an electric vehicle battery thermal runaway and online internal short-circuit detection, IEEE Transactions on Power Electronics, 36(3), 2452-2455 (2021). https://doi.org/10.1109/TPEL.2020.3013191
- Z. An, Y. Zhao, X. Du, T. Shi, and D. Zhang, Experimental research on thermal-electrical behavior and mechanism during external short circuit for LiFePO4 Liion battery, Appl. Energy, 332, 120519 (2023).
- T. Dong, P. Peng, and F. Jiang, Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations, Int. J. Heat Mass Transf., 117, 261-272 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.024
- P. Lyu, X. Liu, C. Liu, and Z. Rao, Experimental and modeling investigation on thermal risk evaluation of tabs for pouch-type lithium-ion battery and the relevant heat rejection strategies, Int. J. Heat Mass Transf., 202, 123770 (2023).
- L. Chang, W. Chen, Z. Mao, X. Huang, T. Ren, Y. Zhang, and Z. Cai, Experimental study on the effect of ambient temperature and discharge rate on the temperature field of prismatic batteries, J. Energy Storage, 59, 106577 (2023).
- N. Mao, T. Zhang, Z. Wang, and Q. Cai, A systematic investigation of internal physical and chemical changes of lithium-ion batteries during overcharge, J. Power Sources, 518, 230767 (2022).
- X. Hu, F. Gao, Y. Xiao, D. Wang, Z. Gao, Z. Hunag, S. Ren, N. Jiang, and S. Wu, Advancements in the safety of lithium-ion battery: The trigger, consequence and mitigation method of thermal runaway, Chem. Eng. J., 481, 148450 (2024).
- Z. Wang, T. He, H. Bian, F. Jiang, and Y. Yang, Characteristics of and factors influencing thermal runaway propagation in lithium-ion battery packs, J. Energy Storage, 41, 102956 (2021).
- Q. Yuan, F. Zhao, W. Wang, Y. Zhao, Z. Liang, and D. Yan, Overcharge failure investigation of lithium-ion batteries, Electrochim. Acta, 178, 682-688 (2015). https://doi.org/10.1016/j.electacta.2015.07.147
- Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources, 208, 210-224 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.038
- R. Spotnitz and J. Franklin, Abuse behavior of high-power, lithium-ion cells, J. Power Sources, 113(1), 81-100 (2003). https://doi.org/10.1016/S0378-7753(02)00488-3
- Z. Wang, J. Yuan, X. Zhu, H. Wang, L. Huang, Y. Wang, and S. Xu, Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study, J. Energy Chem., 55, 484-498 (2021). https://doi.org/10.1016/j.jechem.2020.07.028
- W. Kong, H. Li, X. Huang, and L. Chen, Gas evolution behaviors for several cathode materials in lithium-ion batteries, J. Power Sources, 142(1-2), 285-291 (2005). https://doi.org/10.1016/j.jpowsour.2004.10.008
- N. Thaweelap and R. Utke, Dehydrogenation kinetics and reversibility of LiAlH4-LiBH4 doped with Ti-based additives and MWCNT, J. Phys. Chem. Solids, 98, 149-155 (2016). https://doi.org/10.1016/j.jpcs.2016.07.005
- C. Maupoix, J. L. Houzelot, E. Sciora, G. Gaillard, S. Charton, L. Saviot, and F. Bernard, Experimental investigation of the grain size dependence of the hydrolysis of LiH powder, Powder Technol., 208(2), 318-323 (2011). https://doi.org/10.1016/j.powtec.2010.08.023
- O. Dolotko, N. Gehrke, T. Malliaridou, R. Sieweck, L. Herrmann, B. Hunzinger, M. Knapp, and H. Ehrenberg, Universal and efficient extraction of lithium for lithium-ion battery recycling using mechanochemistry, Commun. Chem., 6, 49 (2023).
- M. Kim, J. Jeon, and J. Hong, Reaction mechanism study and modeling of thermal runaway inside a high nickel-based lithium-ion battery through component combination analysis, Chem. Eng. J., 471, 144434 (2023).
- S. Shahid and M. Agelin-Chaab, A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries, Energy Convers. Manag. X, 16, 100310 (2022).
- UL LLC, Safety issues for lithium-ion batteries. https://code-authorities.ul.com/wp-content/uploads/2016/02/Safety_Issues_for_Lithium_Ion_Batteries1.pdf
- A. Kriston, I. Adanouj, V. Ruiz, and A. Pfrang, Quantification and simulation of thermal decomposition reactions of Li-ion battery materials by simultaneous thermal analysis coupled with gas analysis, J. Power Sources, 435, 226774 (2019).
- H. Zhou, M. Parmananda, K. R. Crompton, M. P. Hladky, M. A. Dann, J. K. Ostanek, and P. P. Mukherjee, Effect of electrode crosstalk on heat release in lithium-ion batteries under thermal abuse scenarios, Energy Storage Mater., 44, 326-341 (2022).
- W. Qingsong, S. Jinhua, and C. Chunhuu, Thermal stability of LiPF6/EC + DMC + EMC electrolyte for lithium ion batteries, Rare Metals, 25(6), 94-99 (2006). https://doi.org/10.1016/S1001-0521(07)60052-7
- J. Zhang, Q. Kong, Z. Liu, S. Pang, L. Yue, J. Yao, X. Wang, and G. Cui, A highly safe and inflame retarding aramid lithium ion battery separator by a papermaking process, Solid State Ion., 245-246, 49-55 (2013). https://doi.org/10.1016/j.ssi.2013.05.016
- C. T. Love, Thermomechanical analysis and durability of commercial micro-porous polymer Li-ion battery separators, J. Power Sources, 196(5), 2905-2912 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.083
- S.-M. Bak, K.-W. Nam, W. Chang, X. Yu, E. Hu, S. Hwang, E. A. Stach, K.-B. Kim, K. Y. Chung, and X.-Q. Yang, Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 Cathode Materials, Chem. Mater., 25(3), 337-351 (2013). https://doi.org/10.1021/cm303096e
- Q. Wang, J. Sun, X. Yao, and C. Chen, Thermal behavior of lithiated graphite with electrolyte in lithium-ion batteries, J. Electrochem. Soc., 153, A329 (2006).
- X. Liu, L. Yin, D. Ren, L. Wang, Y. Ren, W. Xu, S. Lapidus, H. Wang, X. He, Z. Chen, G.-L. Xu, M. Ouyang, and K. Amine, In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode, Nat. Commun., 12, 4235 (2021).
- M. N. Richard and J. R. Dahn, Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte, J. Electrochem. Soc., 146, 2068 (1999).
- H. Yang and X.-D. Shen, Dynamic TGA-FTIR studies on the thermal stability of lithium/graphite with electrolyte in lithium-ion cell, J. Power Sources, 167(2), 515-519 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.029
- B. S. Parimalam, A. D. MacIntosh, R. Kadam, and B. L. Lucht, Decomposition reactions of anode solid electrolyte interphase (SEI) components with LiPF6, J. Phys. Chem. C, 121(41), 22733-22738 (2017). https://doi.org/10.1021/acs.jpcc.7b08433
- A. T. S. Freiberg, J. Sicklinger, S. Solchenbach, and H. A. Gasteiger, Li2CO3 decomposition in Li-ion batteries induced by the electrochemical oxidation of the electrolyte and of electrolyte impurities, Electrochim. Acta, 346, 136271 (2020).
- E. W. C. Spotte-Smith, T. B. Petrocelli, H. D. Patel, S. M. Blau, and K. A. Persson, Elementary decomposition mechanisms of lithium hexafluorophosphate in battery electrolytes and interphases, ACS Energy Lett., 8(1), 347-355 (2023). https://doi.org/10.1021/acsenergylett.2c02351
- Z. Liao, S. Zhang, K. Li, M. Zhao, Z. Qiu, D. Han, G. Zhang, and T. G. Habetler, Hazard analysis of thermally abused lithium-ion batteries at different state of charges, J. Energy Storage, 27, 101065 (2020)