DOI QR코드

DOI QR Code

리튬이차전지의 과충전에 의한 열폭주 현상의 이해

Understanding Thermal Runaway Phenomena in Overcharged Lithium-Ion Batteries

  • 이민서 (공주대학교 화학교육과) ;
  • 유지선 (한국건설기술연구원(KICT) 화재안전연구소) ;
  • 강경신 (한남대학교 토목.건축공학부) ;
  • 이재승 (한남대학교 토목.건축공학부) ;
  • 봉성율 (공주대학교 화학교육과)
  • Minseo Lee (Department of Chemistry Education, Kongju National University) ;
  • Ji-sun You (Fire Research Center, Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Kyeong-sin Kang (Department of Architectural Engineering, Hannam University) ;
  • Jaesung Lee (Department of Architectural Engineering, Hannam University) ;
  • Sungyool Bong (Department of Chemistry Education, Kongju National University)
  • 투고 : 2024.05.10
  • 심사 : 2024.05.14
  • 발행 : 2024.05.31

초록

이차전지는 우리 생활에 있어 지구온난화에 따른 화석연료의 대체원으로서 전기차 및 에너지저장장치(Energy storage system, ESS) 등 필수불가결한 신재생에너지원으로 활용하고 있다. 그러나, 과방전, 고속충방전, 단락 등 여러 원인에 따른 이차전지 내 열폭주 현상으로 인해 배터리 화재 및 폭발에 대한 사건사례들이 보고되고 있으며, 각각의 원인에 적합한 해결책을 찾기 위해 많은 노력을 기울이고 있다. 특히, 과충전 과정에서 원인으로 추정되는 사례들이 지속적으로 보고되고 있으므로, 본 총설에서는 과충전 과정에서 발생할 수 있는 이차전지의 화학적 반응들을 살펴보고, 이를 점검 및 예방하기 위한 위험조사방법에 대해서 이야기하고자 한다.

Secondary batteries are used as an essential renewable energy source in our lives, such as electric vehicles and energy storage systems (ESS), as an alternative to fossil fuels due to global warming. However, cases of battery fires and explosions have been reported due to thermal runaway in secondary batteries due to various causes such as overdischarge, high-speed charging and discharging, and external short circuit, and great efforts are being made to find solutions suitable for each cause. In particular, as cases presumed to be caused by the overcharging process have been reported, this review will examine the chemical reactions of secondary batteries that can occur during the overcharging process and discuss risk investigation methods to check and prevent them.

키워드

참고문헌

  1. A. Manthiram, A reflection on lithium-ion battery cathode chemistry, Nat. Commun., 11, 1550 (2020).
  2. M. J. Kim and J. H. Ryu, Impact of drying temperature in high-loading positive electrode fabrication process for lithium-ion batteries, J. Korean Electrochem. Soc., 27(1), 40-46 (2024).
  3. T. Kim, W. Song, D.-Y. Son, L. K. Ono, and Y. Qi, Lithium-ion batteries: outlook on present, future, and hybridized technologies, J. Mater. Chem. A, 7, 2942-2964 (2019). https://doi.org/10.1039/C8TA10513H
  4. H. S. Jeon and J. H. Ryu, Improved cycle performance of high-capacity SiOx negative electrodes with carbon nanotube conducting agents for lithium-ion batteries, J. Korean Electrochem. Soc., 26(3), 35-41 (2023).
  5. Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim, J. Wang, J. Koettgen, Y. Sun, B. Ouyang, T. Chen, Z. Lun, Z. Rong, K. Persson, and G. Ceder, Promises and challenges of next-generation "Beyond Li-ion" batteries for electric vehicles and grid decarbonization, Chem. Rev., 121(3), 1623-1669 (2021). https://doi.org/10.1021/acs.chemrev.0c00767
  6. Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, and B. Li, A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards, J. Energy Chem., 59, 83-99 (2021). https://doi.org/10.1016/j.jechem.2020.10.017
  7. Tesla fire accident. https://www.tesla-fire.com/
  8. D. Ren, X. Feng, L. Liu, H. Hsu, L. Lu, L. Wang, X. He, and M. Ouyang, Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition, Energy Storage Mater., 34, 563-573 (2021).
  9. L. Li, X. Zhou, X. Ju, Z. Zhou, B. Wang, B. Cao, and L. Yang, Comprehensive analysis on aging behavior and safety performance of LiNixCoyMnzO2/graphite batteries after slight over-discharge cycle, Appl. Therm. Eng., 225, 120172 (2023).
  10. G. Zhang, X. Wei, S. Chen, J. Zhu, G. Han, and H. Dai, Unlocking the thermal safety evolution of lithium-ion batteries under shallow over-discharge, J. Power Sources, 521, 230990 (2022).
  11. H. Zhou, C. Fear, J. A. Jeevarajan, and P. P. Mukherjee, State-of-electrode (SOE) analytics of lithium-ion cells under overdischarge extremes, Energy Storage Mater., 54, 60-74 (2023). https://doi.org/10.1016/j.ensm.2022.10.024
  12. W. Gao, X. Li, M. Ma, Y. Fu, J. Jiang, and C. Mi, Case study of an electric vehicle battery thermal runaway and online internal short-circuit detection, IEEE Transactions on Power Electronics, 36(3), 2452-2455 (2021). https://doi.org/10.1109/TPEL.2020.3013191
  13. Z. An, Y. Zhao, X. Du, T. Shi, and D. Zhang, Experimental research on thermal-electrical behavior and mechanism during external short circuit for LiFePO4 Liion battery, Appl. Energy, 332, 120519 (2023).
  14. T. Dong, P. Peng, and F. Jiang, Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations, Int. J. Heat Mass Transf., 117, 261-272 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.024
  15. P. Lyu, X. Liu, C. Liu, and Z. Rao, Experimental and modeling investigation on thermal risk evaluation of tabs for pouch-type lithium-ion battery and the relevant heat rejection strategies, Int. J. Heat Mass Transf., 202, 123770 (2023).
  16. L. Chang, W. Chen, Z. Mao, X. Huang, T. Ren, Y. Zhang, and Z. Cai, Experimental study on the effect of ambient temperature and discharge rate on the temperature field of prismatic batteries, J. Energy Storage, 59, 106577 (2023).
  17. N. Mao, T. Zhang, Z. Wang, and Q. Cai, A systematic investigation of internal physical and chemical changes of lithium-ion batteries during overcharge, J. Power Sources, 518, 230767 (2022).
  18. X. Hu, F. Gao, Y. Xiao, D. Wang, Z. Gao, Z. Hunag, S. Ren, N. Jiang, and S. Wu, Advancements in the safety of lithium-ion battery: The trigger, consequence and mitigation method of thermal runaway, Chem. Eng. J., 481, 148450 (2024).
  19. Z. Wang, T. He, H. Bian, F. Jiang, and Y. Yang, Characteristics of and factors influencing thermal runaway propagation in lithium-ion battery packs, J. Energy Storage, 41, 102956 (2021).
  20. Q. Yuan, F. Zhao, W. Wang, Y. Zhao, Z. Liang, and D. Yan, Overcharge failure investigation of lithium-ion batteries, Electrochim. Acta, 178, 682-688 (2015). https://doi.org/10.1016/j.electacta.2015.07.147
  21. Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources, 208, 210-224 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.038
  22. R. Spotnitz and J. Franklin, Abuse behavior of high-power, lithium-ion cells, J. Power Sources, 113(1), 81-100 (2003). https://doi.org/10.1016/S0378-7753(02)00488-3
  23. Z. Wang, J. Yuan, X. Zhu, H. Wang, L. Huang, Y. Wang, and S. Xu, Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study, J. Energy Chem., 55, 484-498 (2021). https://doi.org/10.1016/j.jechem.2020.07.028
  24. W. Kong, H. Li, X. Huang, and L. Chen, Gas evolution behaviors for several cathode materials in lithium-ion batteries, J. Power Sources, 142(1-2), 285-291 (2005). https://doi.org/10.1016/j.jpowsour.2004.10.008
  25. N. Thaweelap and R. Utke, Dehydrogenation kinetics and reversibility of LiAlH4-LiBH4 doped with Ti-based additives and MWCNT, J. Phys. Chem. Solids, 98, 149-155 (2016). https://doi.org/10.1016/j.jpcs.2016.07.005
  26. C. Maupoix, J. L. Houzelot, E. Sciora, G. Gaillard, S. Charton, L. Saviot, and F. Bernard, Experimental investigation of the grain size dependence of the hydrolysis of LiH powder, Powder Technol., 208(2), 318-323 (2011). https://doi.org/10.1016/j.powtec.2010.08.023
  27. O. Dolotko, N. Gehrke, T. Malliaridou, R. Sieweck, L. Herrmann, B. Hunzinger, M. Knapp, and H. Ehrenberg, Universal and efficient extraction of lithium for lithium-ion battery recycling using mechanochemistry, Commun. Chem., 6, 49 (2023).
  28. M. Kim, J. Jeon, and J. Hong, Reaction mechanism study and modeling of thermal runaway inside a high nickel-based lithium-ion battery through component combination analysis, Chem. Eng. J., 471, 144434 (2023).
  29. S. Shahid and M. Agelin-Chaab, A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries, Energy Convers. Manag. X, 16, 100310 (2022).
  30. UL LLC, Safety issues for lithium-ion batteries. https://code-authorities.ul.com/wp-content/uploads/2016/02/Safety_Issues_for_Lithium_Ion_Batteries1.pdf
  31. A. Kriston, I. Adanouj, V. Ruiz, and A. Pfrang, Quantification and simulation of thermal decomposition reactions of Li-ion battery materials by simultaneous thermal analysis coupled with gas analysis, J. Power Sources, 435, 226774 (2019).
  32. H. Zhou, M. Parmananda, K. R. Crompton, M. P. Hladky, M. A. Dann, J. K. Ostanek, and P. P. Mukherjee, Effect of electrode crosstalk on heat release in lithium-ion batteries under thermal abuse scenarios, Energy Storage Mater., 44, 326-341 (2022).
  33. W. Qingsong, S. Jinhua, and C. Chunhuu, Thermal stability of LiPF6/EC + DMC + EMC electrolyte for lithium ion batteries, Rare Metals, 25(6), 94-99 (2006). https://doi.org/10.1016/S1001-0521(07)60052-7
  34. J. Zhang, Q. Kong, Z. Liu, S. Pang, L. Yue, J. Yao, X. Wang, and G. Cui, A highly safe and inflame retarding aramid lithium ion battery separator by a papermaking process, Solid State Ion., 245-246, 49-55 (2013). https://doi.org/10.1016/j.ssi.2013.05.016
  35. C. T. Love, Thermomechanical analysis and durability of commercial micro-porous polymer Li-ion battery separators, J. Power Sources, 196(5), 2905-2912 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.083
  36. S.-M. Bak, K.-W. Nam, W. Chang, X. Yu, E. Hu, S. Hwang, E. A. Stach, K.-B. Kim, K. Y. Chung, and X.-Q. Yang, Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 Cathode Materials, Chem. Mater., 25(3), 337-351 (2013). https://doi.org/10.1021/cm303096e
  37. Q. Wang, J. Sun, X. Yao, and C. Chen, Thermal behavior of lithiated graphite with electrolyte in lithium-ion batteries, J. Electrochem. Soc., 153, A329 (2006).
  38. X. Liu, L. Yin, D. Ren, L. Wang, Y. Ren, W. Xu, S. Lapidus, H. Wang, X. He, Z. Chen, G.-L. Xu, M. Ouyang, and K. Amine, In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode, Nat. Commun., 12, 4235 (2021).
  39. M. N. Richard and J. R. Dahn, Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte, J. Electrochem. Soc., 146, 2068 (1999).
  40. H. Yang and X.-D. Shen, Dynamic TGA-FTIR studies on the thermal stability of lithium/graphite with electrolyte in lithium-ion cell, J. Power Sources, 167(2), 515-519 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.029
  41. B. S. Parimalam, A. D. MacIntosh, R. Kadam, and B. L. Lucht, Decomposition reactions of anode solid electrolyte interphase (SEI) components with LiPF6, J. Phys. Chem. C, 121(41), 22733-22738 (2017). https://doi.org/10.1021/acs.jpcc.7b08433
  42. A. T. S. Freiberg, J. Sicklinger, S. Solchenbach, and H. A. Gasteiger, Li2CO3 decomposition in Li-ion batteries induced by the electrochemical oxidation of the electrolyte and of electrolyte impurities, Electrochim. Acta, 346, 136271 (2020).
  43. E. W. C. Spotte-Smith, T. B. Petrocelli, H. D. Patel, S. M. Blau, and K. A. Persson, Elementary decomposition mechanisms of lithium hexafluorophosphate in battery electrolytes and interphases, ACS Energy Lett., 8(1), 347-355 (2023). https://doi.org/10.1021/acsenergylett.2c02351
  44. Z. Liao, S. Zhang, K. Li, M. Zhao, Z. Qiu, D. Han, G. Zhang, and T. G. Habetler, Hazard analysis of thermally abused lithium-ion batteries at different state of charges, J. Energy Storage, 27, 101065 (2020)