DOI QR코드

DOI QR Code

A Study on Long-Term Cycling Performance by External Pressure Change for Pouch-Type Lithium Metal Batteries

  • Seong-Ju Sim (Battery Research Division, Korea Electrotechnology Research Institute(KERI)) ;
  • Bong-Soo Jin (Battery Research Division, Korea Electrotechnology Research Institute(KERI)) ;
  • Jun-Ho Park (Battery Research Division, Korea Electrotechnology Research Institute(KERI)) ;
  • Hyun-Soo Kim (Battery Research Division, Korea Electrotechnology Research Institute(KERI))
  • 투고 : 2024.01.02
  • 심사 : 2024.02.13
  • 발행 : 2024.05.31

초록

Lithium dendrite formation is one of the most significant problems with lithium metal batteries. The lithium dendrite reduces the lithium metal batteries' cycling life and safety. To apply consistent external pressure to a lithium metal pouch cell, we design a press jig in this study. External pressure creates dense lithium morphology by preventing lithium dendrite formation. After 300 cycles at 1 C, the cells with the external pressure perform far better than the cells without it, with a cycling retention of 97.8%. The formation of stable lithium metal is made possible by external pressure, which also enhances safety and cyclability.

키워드

과제정보

This work was supported by the Technology Development Program [(20026754, Development of 50kg/batch inorganic solid electrolyte manufacturing process technology and equipment for all-solid-state batteries) and (20012324, Development of synthesis method (5 Kg/batch scale) with high efficiency and low cost for sulfide solid electrolyte)] funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea).

참고문헌

  1. J. Ko and Y. S. Yoon, Ceram. Int., 2019, 45(1), 30-49. https://doi.org/10.1016/j.ceramint.2018.09.287
  2. H. Xiang, P. Shi, P. Bhattacharya, X. Chen, D. Mei, M. E. Bowden, J. Zheng, J.-G. Zhang, and W. Xu, J. Power Sources, 2016, 318, 170-177. https://doi.org/10.1016/j.jpowsour.2016.04.017
  3. H. Wang, D. Lin, J. Xie, Y. Liu, H. Chen, Y. Li, J. Xu, G. Zhou, Z. Zhang, A. Pei, Y. Zhu, K. Liu, K. Wang, and Y. Cui, Adv. Energy Mater., 9(7), 2019, 1802720.
  4. B. Liu, J.-G. Zhang, and W. Xu, Joule, 2018, 2(5), 833-845. https://doi.org/10.1016/j.joule.2018.03.008
  5. Z. W. Lebens-Higgins, S. Sallis, N. V. Faenza, F. Badway, N. Pereira, D. M. Halat, M. Wahila, C. Schlueter, T.-L. Lee, W. Yang, C. P. Grey, G. G. Amatucci, and L. F. J. Piper, Chem. Mater., 2018, 30(3), 958-969. https://doi.org/10.1021/acs.chemmater.7b04782
  6. L. Chen, J. G. Connell, A. Nie, Z. Huang, K. R. Zavadil, K. C. Klavetter, Y. Yuan, S. Sharifi-Asl, R. ShahbazianYassar, J. A. Libera, A. U. Maneb, and J. W. Elam, J. Mater. Chem. A, 2017, 5, 12297-12309. https://doi.org/10.1039/C7TA03116E
  7. M. Ue and K. Uosaki, Curr. Opin. Electrochem., 2019, 17, 106-113. https://doi.org/10.1016/j.coelec.2019.05.001
  8. B. Kwon, S. Ha, D.-M. Kim, D. Koo, J. Lee, and K. T. Lee, Adv. Mater. Interfaces, 2020, 7(20), 2001037.
  9. K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, and Y. Cui, Nat. Energy, 2016, 1, 16010.
  10. L. Li, S. Basu, Y. Wang, Z. Chen, P. Hundekar, B. Wang, J. Shi, Y. Shi, S. Narayanan, and N. Koratkar, Science, 2018, 359, 1513-1516. https://doi.org/10.1126/science.aap8787
  11. W. Wang, F. Hao, P. P. Mukherjee, ACS Appl. Mater. Interfaces, 2020, 12(1), 556-566. https://doi.org/10.1021/acsami.9b16186
  12. X. Yin, W. Tang, I. D. Jung, K. C. Phua, S. Adams, S. W. Lee, and G. W. Zheng, Nano Energy, 2018, 50, 659-664. https://doi.org/10.1016/j.nanoen.2018.06.003
  13. C. Niu, H. Lee, S. Chen, Q. Li, J. Du, W. Xu, J.-G. Zhang, M. S. Whittingham, and J. Li, Nat. Energy, 2019, 4, 551-559. https://doi.org/10.1038/s41560-019-0390-6
  14. C. Niu, H. Lee, S. Chen, Q. Li, J. Du, W. Xu, J.-G. Zhang, M. S. Whittingham, J. Xiao, and J. Liu, Nat. Energy, 2019, 4, 551-559. https://doi.org/10.1038/s41560-019-0390-6
  15. X. Liu, C. Shen, N. Gao, Q. Hou, F. Song, X. Tian, Y. He, J. Huang, Z. Fang, and K. Xie, Electrochim. Acta, 2018, 289, 422-427. https://doi.org/10.1016/j.electacta.2018.09.085
  16. H. Ma, D. Hwang, Y. J. Ahn, M.-Y. Lee, S. Kim, Y. Lee, S.-M. Lee, S. K. Kwak, and N.-S. Choi, ACS Appl. Mater. Interfaces, 2020, 12(26), 29365-29375.
  17. S. Kim, S. O. Park, M.-Y. Lee, J.-A. Lee, I. Kristanto, T. K. Lee, D. Hwang, J. Kim, T.-U. Wi, H.-W. Lee, S. K. Kwak, and N.-S. Choi, Energy Storage Mater., 2022, 45, 1-13. https://doi.org/10.1016/j.ensm.2021.10.031
  18. B. Jache, J. O. Binder, T. Abe, and P. Adelhelm, Phys. Chem. Chem. Phys., 2016, 18, 14299-14316. https://doi.org/10.1039/C6CP00651E
  19. C. Yang, X. Zhang, J. Huang, P. Ao, and G. Zhang, Electrochim. Acta, 2016, 196, 261-269. https://doi.org/10.1016/j.electacta.2016.02.180
  20. Q. Wang, C. Zhao, J. Wang, Z. Yao, S. Wang, S. G. H. Kumar, S. Ganapathy, S. Eustace, X. Bai, B. Li, and M. Wagemaker, Nat. Commun., 2023, 14, 440.
  21. Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.-S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J. H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, and I. T. Han, Nat. Energy, 2020, 5, 299-308. https://doi.org/10.1038/s41560-020-0575-z
  22. Y. Feng, C. Zhang, B. Li, S. Xiong, and J. Song, J. Mater. Chem. A, 2019, 7, 6090-6098. https://doi.org/10.1039/C8TA10779C
  23. J.-H. Park, K. Park, R.-H. Kim, D.-J. Yun, S.-Y. Park, D. Han, S.-S. Lee, and J.-H. Park, J. Mater. Chem. A, 2015, 3, 10730-10737. https://doi.org/10.1039/C5TA00609K
  24. J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, (...), and J.-G. Zhang, Nat. Energy, 2019, 4, 180-186. https://doi.org/10.1038/s41560-019-0338-x