DOI QR코드

DOI QR Code

Effect of Electrolyte Filtration Accuracy on Electrochemical Machining Quality for Titanium Alloy

  • Zhiliang Xu (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Zhengyang Xu (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Hongyu Xu (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Zhenyu Shen (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Tianyu Geng (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics)
  • 투고 : 2023.12.18
  • 심사 : 2024.02.06
  • 발행 : 2024.05.31

초록

Electrochemical machining (ECM) is an effective manufacturing method for difficult-to-machine materials and is widely used in the precision manufacturing of aerospace components. In recent years, the requirements for the machining accuracy and surface integrity of ECM have become increasingly stringent. To further improve the machining quality, this work investigated the intricate laws between electrolyte filtration accuracy and machining quality. Electrolytes with different filtration accuracies were compared, and a numerical simulation was used to evaluate the change in temperature and bubble rate of the flow field in the machining area. Experiments were conducted on ECM of Ti-6Al-4V (TC4) alloy workpieces using electrolytes with different filtration accuracy. The workpiece machining accuracy and surface quality were analyzed, and the repetition accuracy of the workpiece was evaluated. The intricate laws between electrolyte filtration accuracy and machining quality were explored. It was found that when the electrolyte filtration accuracy is improved, so too is the machining quality of the ECM. However, once the filtration accuracy has reached a certain value, the machining quality has extremely limited improvement. By evaluating the repetition accuracy of processed workpieces in electrolytes with different filtration accuracies, it was found that when the filtration accuracy reaches a certain value, there is no positive correlation between the repetition accuracy and filtration accuracy. The result shows that, for the workpiece material and conditions considered in this paper, an electrolyte with 0.5㎛ filtration accuracy is suitable for the wide application of precision ECM.

키워드

과제정보

The research was supported by the National Science and Technology Major Project (No. 91960204).

참고문헌

  1. Z. Xu and Y. Wang, Chin. J. Aeronaut., 2021, 34(2), 28-53.  https://doi.org/10.1016/j.cja.2019.09.016
  2. Y. Wang, Z. Xu, and A. Zhang, Electrochim. Acta, 2019, 331, 135429. 
  3. Z. Xu, J. Liu, Q. Xu, T. Gong, D. Zhu, and N. Qu, Int. J. Adv. Manuf. Technol., 2015, 79, 531-539.  https://doi.org/10.1007/s00170-015-6815-x
  4. F. Klocke, A. Klink, D. Veselovac, D. K. Aspinwall, S. L. Soo, M. Schmidt, J. Schilp, G. Levy, and J.-P. Kruth, CIRP Annals., 2014, 63(2), 703-726.  https://doi.org/10.1016/j.cirp.2014.05.004
  5. W. Liu, S. Ao, Y. Li, Z. Liu, H. Zhang, S. M. Manladan, Z. Luo, and Z. P. Wang, Electrochim. Acta, 2017, 233, 190-200.  https://doi.org/10.1016/j.electacta.2017.03.025
  6. F. Klocke, M. Zeis, A. Klink, and D. Veselovac, Procedia CIRP, 2013, 6, 369-373.  https://doi.org/10.1016/j.procir.2013.03.040
  7. F. Klocke, M. Zeis, A. Klink, and D. Veselovac, Procedia CIRP, 2012, 2, 98-101.  https://doi.org/10.1016/j.procir.2012.05.048
  8. X. Fang, N. Qu, Y. Zhang, Z. Xu, and D. Zhu, J. Mater. Process. Technol., 2014, 214(1), 36-43.  https://doi.org/10.1016/j.jmatprotec.2013.07.012
  9. D. Ulutan and T. Ozel, Int. J. Mach. Tools Manuf., 51(3), 2011, 250-280.  https://doi.org/10.1016/j.ijmachtools.2010.11.003
  10. F. Klocke, M. Zeis, and A. Klink, Key Eng. Mater., 2012, 504-506, 1237-1242.  https://doi.org/10.4028/www.scientific.net/KEM.504-506.1237
  11. J. Wang, Z. Xu, J. Wang, and D. Zhu, Chin. J. Aeronaut., 2021, 34(6), 151-161.  https://doi.org/10.1016/j.cja.2020.08.002
  12. A. Kumar and B. S. Pabla, Mater. Today: Proc., 2021, 46, 10854-10860.  https://doi.org/10.1016/j.matpr.2021.01.807
  13. X. Y. Ma, Y. Li, and J. L. Shan, Adv. Mater. Res., 2009, 60-61, 388-393.  https://doi.org/10.4028/www.scientific.net/AMR.60-61.388
  14. R. Schuster, V. Kirchner, P. Allongue, and G. Ertl, Science, 2000, 289, 98-101.  https://doi.org/10.1126/science.289.5476.98
  15. A. N. Zaytsev, V. P. Zhitnikov, and T. V. Kosarev, J. Mater. Process. Technol., 2004, 149(1-3), 439-444.  https://doi.org/10.1016/j.jmatprotec.2003.10.047
  16. J. Wang, Z. Xu, J. Wang, and D. Zhu, Corros. Sci., 2021, 183, 109335. 
  17. Z. Xu, X. Chen, Z. Zhou, P. Qin, and D. Zhu, Procedia CIRP, 2016, 42, 125-130.  https://doi.org/10.1016/j.procir.2016.02.206
  18. S. H. Ahn, S. H. Ryu, D. K. Choi, and C. N. Chu, Precis. Eng., 2004, 28(2), 129-134.  https://doi.org/10.1016/j.precisioneng.2003.07.004
  19. Y. Zhang, Z. Xu, D. Zhu, and X. Jun, Int. J. Mach. Tools Manuf., 2015, 92, 10-18.  https://doi.org/10.1016/j.ijmachtools.2015.02.011
  20. L. Guodong, L. Yong, K. Quancun, and T. Hao, Procedia CIRP, 2016, 42, 412-417.  https://doi.org/10.1016/j.procir.2016.02.223
  21. D. Baehre, A. Ernst, K. WeiβHaar, H. Natter, M. Stolpe, and R. Busch, Procedia CIRP, 2016, 42, 137-142.  https://doi.org/10.1016/j.procir.2016.02.208
  22. C. Hui, W. Yu-Kui, W. Zhen-Long, and Z. Wan-Shen, Curr. Res. Nanotechnol., 2011, 1(1), 7-12. 
  23. S. S. Anasane and B. Bhattacharyya, Int. J. Adv. Manuf. Technol., 2016, 86, 2147-2160.  https://doi.org/10.1007/s00170-015-8309-2
  24. Y. S. Yang and J. G. Wang, Trans. Nanjing Univ. Aeronaut. Astronaut., 1979, 4, 47-61. 
  25. M. Tak, S. V. Reddy, A. Mishra, and R. G. Mote, J. Micromanufacturing, 2018, 1(2), 142-153.  https://doi.org/10.1177/2516598418784682
  26. C. Yang, X. Meng, X. Li, Z. Li, H. Yan, L. Wu, and F. Cao, Trans. Nonferrous Metals Soc. China, 2023, 33(1), 141-156.  https://doi.org/10.1016/S1003-6326(22)66096-5
  27. M. Wang and N. Qu, J. Manuf. Process., 2021, 71, 489-500.  https://doi.org/10.1016/j.jmapro.2021.09.050
  28. J. Tao, J. Xu, W. Ren, H. Deng, Y. Hou, H. Sun, and H. Yu, J. Manuf. Process., 2023, 99, 416-433. 
  29. X. Chen, G. Qiu, Z. Ye, M. H. Arshad, K. K. Saxena, and Y. Zhang, Int. J. Mech. Sci., 2023, 256, 108517. 
  30. W. Cao, D. Wang, H. Guo, and D. Zhu, J. Manuf. Process., 2023, 102, 79-94. 
  31. Y.-B. Zeng, Q. Yu., S.-H. Wang, and D. Zhu, CIRP Annals, 2016, 61(1), 195-198.  https://doi.org/10.1016/j.cirp.2012.03.082
  32. Y. Sugie, Kinzoku Hyomen Gijutsu, 1981, 32(8), 403-409. 
  33. M. M. Lohrengel, K. P. Rataj, and T. Munninghoff, Electrochim. Acta, 2016, 201, 348-353.  https://doi.org/10.1016/j.electacta.2015.12.219
  34. N. Qu and C. Gao, J. Mater. Process. Technol., 2021, 294, 117136. 
  35. T. Kurita, K. Miyake, Y. Fujita, and A. Kaneko, J. Manuf. Process., 2020, 60, 636-643.  https://doi.org/10.1016/j.jmapro.2020.10.045
  36. D. Deconinck, S. V. Damme, C. Albu, L. Hotoiu, and J. Deconinck, Electrochim. Acta, 2011, 56(16), 5642-5649.  https://doi.org/10.1016/j.electacta.2011.04.021
  37. Y. Liu and N. Qu, J. Mater. Process. Technol., 2019, 276, 116381. 
  38. T. van der Velden, B. Rommes, A. Klink, S. Reese, and J. Waimann, Int. J. Solids Struct., 2021, 229, 111106. 
  39. M. Wang and N. Qu, J. Mater. Process. Technol., 2021, 295, 117206. 
  40. E. Blasco-Tamarit, A. Igual-Munoz, J. G. Anton, and D. Garcia-Garcia, Corros. Sci., 2008, 50(7), 1848-1857.  https://doi.org/10.1016/j.corsci.2008.03.016
  41. M. M. Lohrengel and C. Rosenkranz, Corros. Sci., 2005, 47(3), 785-794.  https://doi.org/10.1016/j.corsci.2004.07.023
  42. H. Wang, D. Zhu, and J. Liu, CIRP Annals, 2019, 68(1), 165-168.  https://doi.org/10.1016/j.cirp.2019.04.107
  43. Z. Ren, D. Wang, G. Cui, W. Cao, and D. Zhu, Precis. Eng., 2021, 72, 448-460.  https://doi.org/10.1016/j.precisioneng.2021.06.008
  44. Q. Ningsong, F. Xiaolong, L. Wei, Z. Yongbin, and Z. DI, Chin. J. Aeronaut., 2013, 26(1), 224-229.  https://doi.org/10.1016/j.cja.2012.12.026
  45. J. P. Hoare, J. Electrochem. Soc., 1970, 117, 142.