DOI QR코드

DOI QR Code

Electrogeneration of Hypochlorite Ions using a Dimensionally Stable Anode-Type (Ti/PtPd(10%)Ox) Electrode

  • Received : 2023.09.18
  • Accepted : 2023.11.29
  • Published : 2024.05.31

Abstract

The study examined the electrogeneration of hypochlorite ions (ClO-) via electrolysis of aqueous NaCl solutions using a dimensionally stable anode-type (DSA-type) electrode based on platinum and palladium oxides supported on titanium mesh (Ti/PtPd(10%)Ox). The electrogenerated ClO- was quantified on the basis of the absorption band at 292 nm (Aλ = 292) of the UV-Vis spectrum. The effect of initial pH, concentration of NaCl, cell potential difference and electrolysis time were investigated in this study. The results showed that the electrolysis of aqueous NaCl solutions increases the solution pH up to high values (≥ 8.0) that favor the formation of ClO- over chlorine or hypochlorous acid. The hypochlorite concentration increases significantly at pH values > 7.0 and shows a linear trend with increasing NaCl concentration and with increasing cell potential difference. When the cell potential and NaCl concentration are held constant, the maximum hypochlorite value during electrolysis depends on both the cell potential and NaCl concentration. The Ti/PtPd(10%)Ox anode favors the production of hypochlorite ions, making this anode a promising material for use in electrochemical oxidation of wastewater via an indirect mechanism.

Keywords

Acknowledgement

The authors thank CONACYT and VIEP-BUAP for financial support.

References

  1. S. Hand and R. D. Cusick, Environ. Sci. Technol., 2021, 55(6), 3470-3482.  https://doi.org/10.1021/acs.est.0c06254
  2. D. Rajkumar and J. G. Kim, J. Hazard. Mater., 2006, 136(2), 203-212.  https://doi.org/10.1016/j.jhazmat.2005.11.096
  3. C. A. Martinez-Huitle, M. A. Rodrigo, I. Sires, and O. Scialdone, Appl. Catal. B, 2023, 328, 122430. 
  4. M. Panizza, Importance of Electrode Material in the Electrochemical Treatment of Wastewater Containing Organic Pollutants, In: C. Comninellis and G. Chen, (eds.), Electrochemistry for the Environment, Springer, New York, 2010, 25-54. 
  5. C. Comninellis, Electrochim. Acta, 1994, 39(11/12), 1857-1862.  https://doi.org/10.1016/0013-4686(94)85175-1
  6. F. Bonfatti, S. Ferro, F. Lavezzo, M. Malacarne, G. Lodi, and A. De Battisti, J. Electrochem. Soc., 1999, 146(6), 2175. 
  7. F. Bonfatti, S. Ferro, F. Lavezzo, M. Malacarne, G. Lodi, and A. De Battisti, J. Electrochem. Soc., 2000, 147, 592. 
  8. F. Bonfatti, A. De Battisti, S. Ferro, G. Lodi, and S. Osti, Electrochim. Acta, 2000, 46(2-3), 305-314.  https://doi.org/10.1016/S0013-4686(00)00586-7
  9. M. Deborde and U. von Gunten, Water Res., 2008, 42(1-2), 13-51.  https://doi.org/10.1016/j.watres.2007.07.025
  10. Y. Liu, X. Meng, C. Li, Y. Gong, J. Wang, and J. Bo, J. Electrochem. Soc., 2020, 167, 143503. 
  11. E. Brillas and C. A. Martinez-Huitle, Appl. Catal. B., 2015, 166-167, 603-643.  https://doi.org/10.1016/j.apcatb.2014.11.016
  12. W. Yan, J. Chen, J. Wu, Y. Li, Y. Liu, Q. Yang, Y. Tang, and B. Jiang, Chemosphere, 2023, 310, 136848. 
  13. PerkinElmer, Measuring Sodium Hypochlorite in Disinfectants, News-Medical, 2020. https://www.news-medical.net/whitepaper/20201128/Measuring-Sodium-in-Hypochlorite-in-Disinfectants.aspx (Nov. 2023). 
  14. V. L. Snoeyink and D. Jenkins, Water Chemistry, John Wiley & Sons, USA, 1980. 
  15. D. Z. Mijin, M. L. A. Ivic, A. E. Onjia, and B. N. Grgur, Chem. Eng. J., 2012, 204-206, 151-157.  https://doi.org/10.1016/j.cej.2012.07.091
  16. C. Bruguera-Casamada, I. Sires, E. Brillas, and R. M. Araujo, Sep. Purif. Technol., 2017, 178, 224-231  https://doi.org/10.1016/j.seppur.2017.01.042
  17. Y. Feng, D. W. Smith, and J. R. Bolton, J. Environ. Eng. Sci., 2007, 6(3), 277-284.  https://doi.org/10.1139/s06-052
  18. M. J. Watts and K. G. Linden, Water Res., 2007, 41(13), 2871-2878.  https://doi.org/10.1016/j.watres.2007.03.032
  19. F. A. Rodriguez, M. R. Cruz-Diaz, S. Gomez, J. A. Calderon, A. Ortega, and E. P. Rivero, J. Adv. Oxidation Technol., 2018, 21, 20170069. 
  20. Q. Qiao, S. Singh, S.-L. Lo, J. Jin, Y. Ch. Yu, and L. Wang, Chemosphere, 2021, 275, 129848. 
  21. M. Panizza and G. Cerisola, Chem. Rev., 2009, 109, 6541-6569.  https://doi.org/10.1021/cr9001319
  22. D. C. de Moura, C. K. C. de Araujo, C. L. P. S. Zanta, R. Salazar, and C. A. Martinez-Huitle, J. Electroanal. Chem., 2014, 731, 145-152.  https://doi.org/10.1016/j.jelechem.2014.08.008
  23. A. S. Fajardo, H. F. Seca, R. C. Martins, V. N. Corceiro, I. F. Freitas, M. E. Quinta-Ferreira, and R. M. Quinta-Ferreira, J. Electroanal. Chem., 2017, 785, 180-189.  https://doi.org/10.1016/j.jelechem.2016.12.033
  24. D. Rajkumar, J. G. Kim, and K. Palanivelu, Chem. Eng. Technol., 2005, 28(1), 98-105. https://doi.org/10.1002/ceat.200407002