DOI QR코드

DOI QR Code

Steady-State and Transient Response Analysis of DSSC Based on Electron Diffusion Coefficient and Chemical Capacitance

  • J. C. Gallegos (Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico) ;
  • J. Manriquez (Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C.) ;
  • R. Rodriguez (Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico) ;
  • S. Vargas (Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico) ;
  • D. Rangel (Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico)
  • Received : 2023.09.01
  • Accepted : 2023.12.12
  • Published : 2024.05.31

Abstract

A study of the transition from transitory state to steady state in DSSCs based on natural dyes is presented; cochineal was used as dye and Li+, Na+, and K+ were the ions added to the electrolyte. The photocurrent profiles were obtained as a function of time. Several DSSCs were prepared with different cations and their role and the transitory-to-steady transition was determined. A novel hybrid charge carrier source model based on the Heaviside function H(t) and the Lambert-Beer law, was developed and applied to analysis of the transient response of the output photocurrent. Additionally, the maximum effective light absorption coefficient α and the electronic extraction rate κ for each ion were determined: ${\alpha}_{Li^+,Na^+,K^+}\,=\,(0.486,\,0.00085,\,0.1126)\,cm^{-1}$, and also the electronic extraction rate ${\kappa}^{Li^+,Na^+,K^+}_{ext.}\,=\,(1410,\,19.07,\,19.69)\,cm\,s^{-1}$. The impedance model using Fick's second law was developed for carrier recombination to characterize the photocurrent.

Keywords

Acknowledgement

To the personnel of the Light Scattering Laboratory and the Instrumentation Laboratory of the Center for Applied Physics and Advanced Technology of UNAM campus Juriquilla, Queretaro for facilitating the extraction of natural organic pigments and the performance of electrical measurements on the DSSCs, respectively. Also, to the staff of the Photoelectrochemistry Laboratory at the Center for Research and Technological Development in Electrochemistry in Queretaro, for facilitating the electrochemical tests. Juan Carlos Gallegos Mendoza would like to thank the "Consejo Nacional de Ciencia y Tecnologia" for the grant awarded for the development of this project.

References

  1. J. Bisquert, G. Garcia-Belmonte, A. Pitarch, and H. J. Bolink, Chem. Phys. Lett., 2006, 422(1-3), 184-191.  https://doi.org/10.1016/j.cplett.2006.02.060
  2. A. K. Prasad, J. Y. Park, S. H. Kang, and K. S. Ahn, Electrochim. Acta, 2022, 422, 140340. 
  3. A. K. Prasad, J.-Y. Park, H. Y. Jung, J. W. Kang, S.-H. Kang, and K.-S. Ahn, J. Ind. Eng. Chem., 2023, 117, 500-509. 
  4. A. Kay and M. Gratzel, Sol. Energ. Mat. Sol. C., 1996, 44(1), 99-117.  https://doi.org/10.1016/0927-0248(96)00063-3
  5. Y. Ren, D. Zhang, J. Suo, Y. Cao, F. T. Eickemeyer, N. Vlachopoulos, S. M. Zakeeruddin, A. Hagfeldt, and M. Gratzel, Nature, 2023, 613, 60-65. 
  6. K.-H. Park, T.-Y. Kim, S. Han, H.-S. Ko, S.-H. Lee, Y.-M. Song, J.-H. Kim, and J.-W. Lee, Spectrochim. Acta - A: Mol. Biomol. Spectrosc., 2014, 128, 868-873.  https://doi.org/10.1016/j.saa.2014.03.016
  7. D. Rangel, J. C. Gallegos, S. Vargas, F. Garcia, and R. Rodriguez, Results Phys., 2019, 12, 2026-2037.  https://doi.org/10.1016/j.rinp.2019.01.096
  8. Z. Yao, M. Zhang, H. Wu, L. Yang, R. Li, and P. Wang, J. Am. Chem. Soc., 2015, 137(11), 3799-3802.  https://doi.org/10.1021/jacs.5b01537
  9. B.-G. Kim, K. Chung, and J. Kim, Chem. Eur. J., 2013, 19(17), 5220-5230.  https://doi.org/10.1002/chem.201204343
  10. J. He, Y. Liu, J. Gao, and L. Han, Photochem. Photobiol. Sci., 2017, 16(7), 1049-1056.  https://doi.org/10.1039/c6pp00410e
  11. X. Qian, X. Wang, L. Shao, H. Li, R. Yan, and L. Hou, J. Power Sources, 2016, 326, 129-136.  https://doi.org/10.1016/j.jpowsour.2016.06.127
  12. A. Listorti, B. O'Regan, and J. R. Durrant, Chem. Mater., 2011, 23(15), 3381-3399.  https://doi.org/10.1021/cm200651e
  13. J. Bisquert, Phys. Chem. Chem. Phys., 2000, 2(18), 4185-4192.  https://doi.org/10.1039/b001708f
  14. F. Fabregat-santiago, I. Mora-Sero, G. Garcia-Belmonte, and J. Bisquert, J. Phys. Chem. B, 2003, 107(3), 758-768.  https://doi.org/10.1021/jp0265182
  15. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, and P. R. Bueno, J. Electroanal. Chem., 1999, 475(2), 152-163.  https://doi.org/10.1016/S0022-0728(99)00346-0
  16. J. Bisquert, Phys. Chem. Chem. Phys., 2003, 5(24), 5360-5364.  https://doi.org/10.1039/b310907k
  17. J. Fleig, A. Schmid, G. M. Rupp, C. Slouka, E. Navickas, L. Andrejs, H. Hutter, L. Volgger, and A. Nenning, Acta Chim. Slov., 2016, 63(3), 509-518. 
  18. N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, J. Phys. Chem. B, 2003, 107(41), 11307-11315.  https://doi.org/10.1021/jp0304475
  19. P. Docampo, S. Guldin, U. Steiner, and H. J. Snaith, J. Phys. Chem. Lett., 2013, 4(5), 698-703.  https://doi.org/10.1021/jz400084n
  20. Y. Wang, D. Wu, L.-M. Fu, X.-C. Ai, D. Xu, and J.-P. Zhang, Phys. Chem. Chem. Phys., 2014, 16(23), 11626-11632.  https://doi.org/10.1039/C4CP00779D
  21. F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, and A. Hagfeldt, Sol. Energy Mater. Sol. Cells, 2005, 87(1-4), 117-131.  https://doi.org/10.1016/j.solmat.2004.07.017
  22. A. A. Zaky, P. Sergeant, E. Stathatos, P. Falaras, and M. N. Ibrahim, Machines, 2022, 10(10), 882. 
  23. F. Cao, G. Oskam, G. J. Meyer, and P. C. Searson, J. Phys. Chem., 1996, 100(42), 17021-17027.  https://doi.org/10.1021/jp9616573
  24. R. de Levie, Electrochim. Acta, 1964, 9(9), 1231-1245.  https://doi.org/10.1016/0013-4686(64)85015-5
  25. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, and A. Compte, Electrochem. Commun., 1999, 1(9), 429-435.  https://doi.org/10.1016/S1388-2481(99)00084-3
  26. D. Sulzer and K. Yasuda, J. Chem. Theory Comput., 2018, 14(10), 5090-5104.  https://doi.org/10.1021/acs.jctc.8b00364
  27. B. Maldon and N. Thamwattana, J. Phys. Commun., 2020, 4(8), 082001. 
  28. P. R. F. Barnes, K. Miettunen, X. Li, A. Y. Anderson, T. Bessho, M. Gratzel, and B. C. O'Regan, Adv. Mater., 2013, 25(13), 1881-1922.  https://doi.org/10.1002/adma.201201372
  29. A. Bartolotta and G. Calogero, Dye-sensitized solar cells: From synthetic dyes to natural pigments, In: F. Enrichi and G. C. Righini (eds.), Solar Cells and Light Management, Elsevier, 2020, 107-161. 
  30. T. A. N. Peiris, J. S. Sagu, K. G. U. Wijayantha, and J. Garcia-Canadas, ACS Appl. Mater. Interfaces, 2014, 6(17), 14988-14993.  https://doi.org/10.1021/am502827z
  31. R. Hengerer, L. Kavan, P. Krtil, and M. Gratzel, J. Electrochem. Soc., 2000, 147(4), 1467. 
  32. Q. Wang, S. Ito, M. Gratzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, and H. Imai, J. Phys. Chem. B, 2006, 110(50), 25210-25221.  https://doi.org/10.1021/jp064256o
  33. L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw, and I. Uhlendorf, J. Phys. Chem. B, 1997, 101(49), 10281-10289.  https://doi.org/10.1021/jp972466i
  34. T. T. Duignan and X. S. Zhao, Phys. Chem. Chem. Phys., 2020, 22(43), 25126-25135. https://doi.org/10.1039/D0CP04148C