DOI QR코드

DOI QR Code

페닐렌 디아민의 아렌 대체 패턴에 따른 에폭시 수지의 경화 거동과 열 및 기계적 특성 연구

Cure Behavior, Thermal and Mechanical Properties of Epoxy Resins with Arene Substitution Patterns of Phenylenediamines

  • 박건환 (경북대학교 섬유시스템공학과) ;
  • 권웅 (경북대학교 섬유시스템공학과) ;
  • 천지연 (경북대학교 섬유시스템공학과) ;
  • 정희제 (울산과학기술원 신소재공학과) ;
  • 임지훈 (울산과학기술원 신소재공학과) ;
  • 원종성 (국방과학연구소 소재에너지센터) ;
  • 이만영 (국방과학연구소 소재에너지센터) ;
  • 이승걸 (울산과학기술원 신소재공학과) ;
  • 정의경 (경북대학교 섬유시스템공학과)
  • Gun Hwan Park (Department of Textile System Engineering, Kyungpook National University) ;
  • Woong Kwon (Department of Textile System Engineering, Kyungpook National University) ;
  • Jiyeon Cheon (Department of Textile System Engineering, Kyungpook National University) ;
  • Hei Je Jeong (Material Science Engineering, Ulsan National Institute of Science and Technology) ;
  • Ji Hoon Lim (Material Science Engineering, Ulsan National Institute of Science and Technology) ;
  • Jong Sung Won (Materials & Energy Technology Center, Agency for Defense Development) ;
  • Man Young Lee (Materials & Energy Technology Center, Agency for Defense Development) ;
  • Seung Geol Lee (Material Science Engineering, Ulsan National Institute of Science and Technology) ;
  • Euigyung Jeong (Department of Textile System Engineering, Kyungpook National University)
  • 투고 : 2024.03.30
  • 심사 : 2024.04.17
  • 발행 : 2024.04.30

초록

To study the effect of arene substitution patterns of phenylenediamines, as curing agents, on curing behaviors, thermal and mechanical properties of epoxy resins, DGEBF(Diglycidyl ether of bisphenol F) and o, m, p-phenylenediamine(PDA) were selected. The cure kinetics of epoxy mixtures were analyzed under both dynamic and isothermal conditions using differential scanning calorimetry(DSC). The activation energy and curing initiation temperature were found to be lowest with p-PDA and highest with o-PDA and it resulted that the degree of cure and curing rate were highest and fastest with p-PDA and lowest with o-PDA. Tg and thermal stability of the epoxy samples were better with o-PDA and m-PDA than p-PDA. Tensile strength and fracture toughness were highest with m-PDA and lowest with p-PDA. These results indicated that m-PDA could be the best curing agent of isomeric PDAs. And mechanical properties of the epoxy resin could be different only by the isomeric structures of curing agents.

키워드

과제정보

본 연구는 대한민국 정부(산업통상자원부 및 방위사업청) 재원으로 민군협력진흥원에서 수행하는 민군기술협력사업의 연구비 지원으로 수행되었습니다(과제번호 22-CM-19).

참고문헌

  1. B. Chen, Q. Wu, J. Li, K. Lin, D. Chen, C. Zhou, T. Wu, X. Luo, and Y. Liu, "A Novel and Green Method to Synthesize a Epoxidized Biomass Eucommia Gum as the Nanofiller in the Epoxy Composite Coating with Excellent Anticorrosive Performance", Chem. Eng. J., 2020, 379, 122323. 
  2. T. Okabe, Y. Oya, K. Tanabe, G. Kikugawa, and K. Yoshioka, "Molecular Dynamics Simulation of Crosslinked Epoxy Resins: Curing and Mechanical Properties", Eur. Polym. J., 2016, 80, 78-88.  https://doi.org/10.1016/j.eurpolymj.2016.04.019
  3. H.-J. Lim and K.-H. Chung, "Study on the Compositional Construction of Epoxy Based Powder Paint", Clean Technol., 2006, 12, 27-35. 
  4. L. Stieven Montagna, G. Ferreira de Melo Morgado, A. P. Lemes, F. Roberto Passador, and M. Cerqueira Rezende, "Recycling of Carbon Fiber-reinforced Thermoplastic and Thermoset Composites: A Review", J. Thermoplast. Compos. Mater., 2023, 36, 3455-3480. 
  5. H. Nishida, V. Carvelli, T. Fujii, and K. Okubo, "Thermoplastic vs. Thermoset Epoxy Carbon Textile Composites", IOP Conf. Ser.: Mater. Sci. Eng., 2018, 406, 012043.  https://doi.org/10.1088/1757-899X/406/1/012043
  6. X. Mi, N. Liang, H. Xu, J. Wu, Y. Jiang, B. Nie, and D. Zhang, "Toughness and Its Mechanisms in Epoxy Resins", Prog. Mater. Sci., 2022, 130, 100977. 
  7. M. H. Irfan, "Chemistry and Technology of Thermosetting Polymers in Construction Applications", Springer Science & Business Media, 2012. 
  8. W. R. Ashcroft, "Curing Agents for Epoxy Resins", Chemistry and Technology of Epoxy Resins. Dordrecht: Springer Netherlands, 1993, pp.37-71. 
  9. W. M. Kadoya, R. Sierra-Alvarez, B. Jagadish, S. Wong, L. Abrell, E. A. Mash, and J. A. Field, "Covalent Bonding of Aromatic Amine Daughter Products of 2,4-dinitroanisole (DNAN) with Model Quinone Compounds Representing Humus via Nucleophilic Addition", Environ. Pollut., 2021, 268, 115862. 
  10. J. Illman, "Cure of Epoxy Resins with Aromatic Amines: High Heat-Distortion Studies", J. Appl. Polym. Sci., 1966, 10, 1519-1533.  https://doi.org/10.1002/app.1966.070101010
  11. G.-C. Huang and J.-K. Lee, "Cure Kinetics and Dynamic Mechanical Properties of an Epoxy/Polyoxypropylene Diamine System", Polymer (Korea), 2011, 35, 196-202.  https://doi.org/10.7317/pk.2011.35.3.196
  12. H. Cai, P. Li, G. Sui, Y. Yu, G. Li, X. Yang, and S. Ryu, "Curing Kinetics Study of Epoxy Resin/Flexible Amine Toughness Systems by Dynamic and Isothermal DSC", Thermochim. Acta, 2008, 473, 101-105.  https://doi.org/10.1016/j.tca.2008.04.012
  13. M. Lee, W. Kwon, and E. Jeong, "Effect of Stereoisomeric Structures of Curing Agents on Curing Behaviors, Thermal and Mechanical Properties of Epoxy Resins", Text. Color. Finishing, 2018, 30, 180-189. 
  14. K. B. Riad, R. Schmidt, A. A. Arnold, R. Wuthrich, and P. M. Wood-Adams, "Characterizing the Structural Formation of Epoxy-amine Networks: The Effect of Monomer Geometry", Polymer, 2016, 104, 83-90.  https://doi.org/10.1016/j.polymer.2016.09.077
  15. T. Ozawa, "A New Method of Analyzing Thermogravimetric Data", Bull. Chem. Soc. Jpn., 1965, 38, 1881-1886.  https://doi.org/10.1246/bcsj.38.1881
  16. H. E. Kissinger, "Reaction Kinetics in Differential Thermal Analysis", Anal. Chem., 1957, 29, 1702-1706.  https://doi.org/10.1021/ac60131a045
  17. M. Starink, "A New Method for the Derivation of Activation Energies from Experiments Performed at Constant Heating Rate", Thermochim. Acta, 1996, 288, 97-104.  https://doi.org/10.1016/S0040-6031(96)03053-5
  18. J. S. Won, J. E. Lee, J. K. Park, M. Y. Lee, S. H. Kang, and S. G. Lee, "Cure Behavior and Toughness Properties of Polyethersulfone/Multifunctional Epoxy Resin Blends", Polymer-Korea, 2019, 43, 60-68.  https://doi.org/10.7317/pk.2019.43.1.60
  19. R. M. Paroli and J. Penn, "Measuring the Glass Transition Temperature of EPDM Roofing Materials: Comparison of DMA, TMA, and DSC Techniques", Assignment of the Glass Transition. ASTM International, 1994. 
  20. C. S. Wu, Y. L. Liu, Y. C. Chiu, and Y. S. Chiu, "Thermal Stability of Epoxy Resins Containing Flame Retardant Components: an Evaluation with Thermogravimetric Analysis", Polym. Degrad. Stabil., 2002, 78, 41-48.  https://doi.org/10.1016/S0141-3910(02)00117-9
  21. C. D. Doyle, "Kinetic Analysis of Thermogravimetric Data", J. Appl. Polym. Sci., 1961, 5, 285-292.  https://doi.org/10.1002/app.1961.070051506
  22. M. Jackson, M. Kaushik, S. Nazareko, S. Ward, R. Maskell, and J. Wiggins, "Effect of Free Volume Hole-size on Fluid Ingress of Glassy Epoxy Networks", Polymer, 2011, 52, 4528-4535.  https://doi.org/10.1016/j.polymer.2011.07.042
  23. C. Li and A. Strachan, "Free Volume Evolution in the Process of Epoxy Curing and Its Effect on Mechanical Properties", Polymer, 2016, 97, 456-464.  https://doi.org/10.1016/j.polymer.2016.05.059
  24. H. Zhang, S. Sellaiyan, K. Sako, A. Uedono, Y. Taniguchi, and K. Hayashi, "Effect of Free-volume Holes on Static Mechanical Properties of Epoxy Resins Studied by Positron Annihilation and PVT Experiments", Polymer, 2020, 190, 122225.