DOI QR코드

DOI QR Code

Effect of rate of strain on the strength parameters of clay soil stabilized with cement dust by product

  • Radhi M Alzubaidi (Department of Civil Engineering, University of Sharjah) ;
  • Kawkab Selman (Formerly University of Technology) ;
  • Ayad Hussain (Department of Construction and Building, University of Technology)
  • Received : 2024.02.18
  • Accepted : 2024.05.04
  • Published : 2024.05.25

Abstract

The primary goal was to assess how the addition of cement dust, a byproduct known to be harmful, could be used to stabilize clay. Various percentages of cement dust were added to soil samples, which were then subjected to triaxial testing at different rates of strain using an unconsolidated undrained triaxial machine. Six different rates of strain were applied to analyze the response of the clay under different conditions, resulting in 216 triaxial sample tests. As the percentage of cement dust in the clay samples increased, there was a noticeable increase in the strength properties of the clay, indicating a positive effect of cement dust on the clay's strength characteristics. Higher rates of strain during testing led to increased strength properties of the clay. Varying cement dust content influenced the impact of increasing the rate of strain on the clay's strength properties. Higher cement dust content reduced the sensitivity of the clay to changes in strain rate, indicating that the clay became less responsive to changes in strain rate as cement dust content increased. Potential for Clay Stabilization Cement dust proved the potential to enhance the strength properties of clay, indicating its potential utility in clay stabilization applications. Both higher percentages of cement dust and higher rates of strain were found to increase the clay's strength. It's essential to consider both the percentage of cement dust and the rate of strain when assessing the strength properties of clay in practical applications.

Keywords

References

  1. Abdellaziz, M., Karray, M., Betegard, J., Locat, L., Ledoux ,C., Mompin, R. and Chekired, M. (2022), "Strain rate effect on static and dynamic behaviors of eastern Canada fine-grained soils", Can. Geotech. J., 59(7), https://doi.org/10.1139/cgj2021-0140.
  2. Adeyanju, E. and Okeke, C. (2019), "Clay soil stabilization using cement kiln dust", IOP Conf. Series: Materials Science and Engineering, 640, 012080. https://doi.org/10.1088/1757-899X/640/1/012080.
  3. Al-Gharbawi, A., Najemalden, A. and Fattah, M. (2023), "Expansive soil stabilization with lime, cement, and silica fume", Appl. Sci., 13(1), 436. https://doi.org/10.3390/app13010436.
  4. Alzubaidi, R. and Lafta, S. (2013), "Effect of strain rate on the strength characteristics of soil-lime mixture", Geotech. Geol. Eng., 31, 1317-1327. https://doi.org/10.1007/s10706-013-9653-3.
  5. Bagriacik, B., Altay, G. and Kayadelen, C. (2023), "Investigation of engineering properties of clayey soil experimentally with the inclusion of marble and granite waste", Geomech. Eng., 34(4), 425-435. https://doi.org/10.12989/gae.2023.34.4.425.
  6. Chhun, T. and Yune, C. (2023), "Evaluation of strength characteristics of cement-stabilized soil using the electrical resistivity measurement", Geomech. Eng., 33(3), 261-269. https://doi.org/10.12989/gae.2023.33.3.261.
  7. Du, J., Zhou, A., Lin, X., Bu, Y. and Kodikara, J. (2020), "Revealing expansion mechanism of cement-stabilized expansive soil with different interlayer cations through molecular dynamics simulations", J. Phys. Chem., 124, 14672-14684.
  8. Ghadr, S., Langroudi, A. and Bahadori, H. Replacing C3S cement with PP fiber and nano biosilica in stabilization of organic clays", Geomech. Eng., 33(4), 401-414. https://doi.org/10.12989/gae.2023.33.4.401.
  9. Hu, T., Liu, D. and Chang, J. (2020), "Experimental study on strain rate effect of strength characteristics of unsaturated silty clay", Case Studies in Construction Mater., 12, https://doi.org/10.1016/j.cscm.2020.e00332.
  10. Hussain, A. (2002), "Effect of strain rate on strength of Al-Rustamia soil stabilized with cement dust. MSc thesis, building and construction department", University of Technology, Baghdad, Iraq.
  11. Hussain, M. and Hussaini, S. (2023), "Effects of normal stress, shearing rate, PSD and sample size on behavior of ballast in direct shear tests using DEM simulation", Geomech. Eng., 35(5), 475-486. https://doi.org/10.12989/gae.2023.35.5.475.
  12. Kumar, A. and Singh, A. (2017), "Stabilization of soil using Cement Kiln Dust", Int. J. Innov. Res. Sci. Eng. Tech., 6(6), 11631- 11637.
  13. Li, S., Huang, M., Cui, M., Lin, P., Xu, L. and Xu, K. (2023), "Stabilization of cement-soil utilizing microbially induced carbonate precipitation", Geomech. Eng., 35(1), 95-108. https://doi.org/10.12989/gae.2023.35.1.095.
  14. Liu1, L., Wang, S. and Yang, W. (2022), "Strain rate efects on characteristic stresses and acoustic emission properties of granite under quasi-static compression", Front. Earth Sci., 10, https://doi.org/10.3389/feart.2022.960812.
  15. Maichin, P., Jitsangiam, P., Nongnuang, T., Boonserm, K., Nusit, K., Pra-ai, S., Binaree, T. and ke Aryupong, C. (2021), "Stabilized high clay content lateritic soil using cement-FGD gypsum mixtures for road subbase applications", Materials, 14(8), 1858. https://doi.org/10.3390/ma14081858.
  16. Mamo, B., Banoth, K. and Dey, A. (2015), "Effect of strain rate on shear strength parameter of sand", Proceedings of the Indian Geotechnical Conference, Pune, India.
  17. Mohammed, S., Dira2te, D., Dasho, D., Verma, R., Pampana, V., Sangalang, R., Koshuma, A. and Ayalew, A. (2022), "An inclusive study on the effect of strain rate on the stress-strain behavior and the undrained shear strength of clay soils in Kombolcha, Ethiopia", Eng. Tech. Appl. Sci. Res., 12(1), 8107-8113. https://doi.org/10.48084/etasr.4626
  18. Mukherjee, M. and Pathak, S. (2023), "Rate-dependent shearing response of Toyoura sand addressing the influence of initial density and confinement: A visco-plastic constitutive approach", Geomech. Eng., 34(2), 197-208. https://doi.org/10.12989/gae.2023.34.2.197.
  19. Nanda, S., Sivakumar, V., Hoyer, P., Bradshaw, A., Gavin, K.G., Gerkus, H., Jalilvand, S., Gilbert, R.B., Doherty, P. and Fanning, J. (2017), "Effects of strain rates on the undrained shear strength of Kaolin", Geotech. Test. J., 40(6), 951-962. https://doi.org/10.1520/GTJ20160101.
  20. Pandey, A. and Rabbani, A. (2017), "Soil stabilization using cement", Int. J. Civil Eng. Tech., 8(6), 316-322.
  21. Pereira, L., Godinho, L. and Branco, F. (2023), "Predicting unconfined compression strength and split tensile strength of soil-cement via artificial neural networks", Geomech. Eng., 33(6), 611-624. https://doi.org/10.12989/gae.2023.33.6.611.
  22. Sabbar, A., Chegenizadeh, A. and Nikraz, H. (2017), "Experimental Investigation on the Shear Strength Parameters of Sand-Slag Mixtures", Int. J. Geotech. Geol. Eng., 11(3).
  23. Shabani, K., Bahmani, M., Fatehi, H. and Chang, I. (2022), "Improvement of the geotechnical engineering properties of dune sand using a plant-based biopolymer named Serish", Geomech. Eng., 29(5), 535-548. https://doi.org/10.12989/gae.2022.29.5.535.
  24. Solihu, H. (2020), "Cement soil stabilization as an improvement technique for rail track subgrade, and highway subbase and base courses", A Review J. Civil Environ. Eng., 10(3).
  25. Tahsin, A., El-Sherbiny, R. and Salem, A. (2020), "Effect of starin of loading on tensile strength and stiffness of polyester geogrids", J. Al-Azhar Univ. Eng. Sector, 15(55), 573-583. https://doi.org/10.21608/auej.2020.87874
  26. Zhou, J., Zhu, C., Ren, J., Lu, X., Ma, C. and Li, Z. (2022), "Dynamic response of coal and rocks under high strain rate", Geomech. Eng., 29(4), 451-461. https://doi.org/10.12989/gae.2022.29.4.451.
  27. Zhou, S., Zhou, D., Zhang, Y. and Wang, W. (2019), "Study on physical-mechanical properties and microstructure of expansive soil stabilized with fly ash and lime", Adv..Civil Eng., 2019.
  28. Zhu, Q., Jin, Y., Shang, X. and Chen, T. (2019), "A 1D model considering the combined effect of strain-rate and temperature for soft soil", Geomech. Eng.,18(2), 133-140. https://doi.org/10.12989/gae.2019.18.2.133.