• Title/Summary/Keyword: rate of cement dust

Search Result 24, Processing Time 0.023 seconds

Effect of rate of strain on the strength parameters of clay soil stabilized with cement dust by product

  • Radhi M Alzubaidi;Kawkab Selman;Ayad Hussain
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.419-429
    • /
    • 2024
  • The primary goal was to assess how the addition of cement dust, a byproduct known to be harmful, could be used to stabilize clay. Various percentages of cement dust were added to soil samples, which were then subjected to triaxial testing at different rates of strain using an unconsolidated undrained triaxial machine. Six different rates of strain were applied to analyze the response of the clay under different conditions, resulting in 216 triaxial sample tests. As the percentage of cement dust in the clay samples increased, there was a noticeable increase in the strength properties of the clay, indicating a positive effect of cement dust on the clay's strength characteristics. Higher rates of strain during testing led to increased strength properties of the clay. Varying cement dust content influenced the impact of increasing the rate of strain on the clay's strength properties. Higher cement dust content reduced the sensitivity of the clay to changes in strain rate, indicating that the clay became less responsive to changes in strain rate as cement dust content increased. Potential for Clay Stabilization Cement dust proved the potential to enhance the strength properties of clay, indicating its potential utility in clay stabilization applications. Both higher percentages of cement dust and higher rates of strain were found to increase the clay's strength. It's essential to consider both the percentage of cement dust and the rate of strain when assessing the strength properties of clay in practical applications.

Effect of CBS-dust replacement rate on the Qualities of High Volume GGBFS Cement Bricks (CBS-dust 치환에 따른 고로슬래그 다량치환 시멘트 벽돌 품질에 미치는 영향)

  • Han, Jun-Hui;Han, Soo-Hwan;Kim, Su-Hoo;Yoon, Chi-Whan;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.105-106
    • /
    • 2021
  • This study examines the performance of CBS-Dust for the utilization of cement bricks as alkali stimulants for furnace slag replacement binders. It converts the CBS-Dust substitution rate and the excess slag substitution rate. According to the analysis, when replacing CBS-Dust with 65~70 % of BS substitution rate and 7.5~10 % of CBS-Dust, it shows excellent performance as an alkali stimulant of BS' potential hydrophobic reaction, and it is expected to be effective for secondary products of BS replaced in large quantities.

  • PDF

Properties of Hardened Mortar depending on Combinations Blast Furnace Slag and Chlorine By-pass System Dust (고로슬래그 및 CBS Dust의 혼합비율 변화에 따른 경화 모르타르의 특성)

  • Hyun, Seung-Yong;Han, Jun-Hui;Kim, Kyoung-Hoon;Lee, Dong-Joo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.116-117
    • /
    • 2018
  • The aim of this study is to investigate the properties of hardened mortar with chlorine by-pass system(CBS) in cement production in blast furnace slag(BS) mixed cement. Compressive strength had a tendency to be increased when the CBS Dust was replaced by 10% at the BS replacement rate of 0%. The 65% combination of BS showed a tendency to decrease as the CBS Dust exchange rate increases. Flexural strength was reduced as CBS Dust exchange rate increases in BS replacement ratio of 0%. The use of 5% of CBS dust can contribute to enhance the quality of non reinforced concrete.

  • PDF

Exposure Assessment of Airborne Dusts in the Cement Manufacturing and Handling Industries (시멘트 제조·취급사업장에서 발생하는 공기 중 분진의 노출평가)

  • Bae, Hye Jeong;Sung, Eun Chang;Phee, Young Gyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.4
    • /
    • pp.390-397
    • /
    • 2017
  • Objectives: The purpose of this study was to evaluate concentrations in airborne total and respirable dusts in the cement manufacturing and handling industries. Methods: Fifty-three total dust and 42 respirable dustsamples were collected from 24 work places. Total dust samples were collected using a three-stage cassette. Respirable dust samples were collected using a cyclone equipped with a 37 mm, $5{\mu}m$ pore size PVC filter. Results: The geometric means of the dust concentrations were $0.10mg/m^3$ and $0.08mg/m^3$ in total dust and respirable dust, respectively. The Korean Occupational Exposure Limit($10mg/m^3$) was not exceeded, but the rate of exceeding the American Conference of Governmental Industrial Hygienist(ACGIH) Threshold Limit Value($1mg/m^3$) was 16.7%. Conclusion: When measuring the level of dust at cement manufacturers, the airborne concentration of respirable dust should be evaluated. In order to protect the health of workers exposed to cement dust, it is necessary to actively consider strengthening the Korean Occupational Exposure Limit.

Hydration and mechanical properties of Blended Cement added Bypass dust (By-pass Dust를 첨가한 혼합 시멘트의 수화 및 기계적 특성)

  • 성진욱;나종윤;김창은;이승헌;이봉한;김수룡;류한웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.33-39
    • /
    • 1999
  • This study was conducted to confirm the effect of bypass dust on the hydration and mechanical properties of the cement pastes and mortar obtained from ordinary Portland cement (OPC), OPC-slag and OPC-fly ash system. The rate of heat evolution is accelerated with the content of By-pass Dust(BD). total heat evolution increased because alkali-chlorides activated the hydration of blended cement. Compressive strength and bound water content show maximum value at 5wt% By-pass Dust(BD) on each curing time in ordinary Portland cement and slag blended cement. Ca(OH)2 content of Ordinary Portland Cement increased as the content of BD and curing time. In blended cement, the formation of Ca(OH)2 is active at early hydration stage. By pozzolanic reaction, the content of Ca(OH)2 is decreased as curing time goes by. According to the BD content stable chlorides complex of Friedel's salt (C3A·CaCl2·10H2O) is created. Due to the hydration activation effect of chlorides and alkali we observed Type II C-S-H, which developed into densest microstructure.

  • PDF

Fine Dust Adsorption Properties of Cement Matrix Mixed with Expanded Graphite (팽창흑연을 혼입한 시멘트 경화체의 흡착 특성)

  • Lee, Jin-Won;Lee, Chang-Woo;Hwang, Woo-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.105-106
    • /
    • 2022
  • Now, the world is increasingly anxious about fine dust due to abnormal temperatures caused by global warming and increased yellow dust caused by desertification, and the World Health Organization (WHO) pointed out that more than 99% of the world's population is exposed to fine dust. In this situation, the reduction rate of fine dust and carbon dioxide of the matrix was tested by using expanded graphite, an eco-friendly and porous material, to improve air quality. As a result of the test, since expanded graphite is a material that expands between layers compared to conventional graphite, the reduction rate of fine dust and carbon dioxide decreases as the replacement rate of expanded graphite increases.

  • PDF

Engineering Characteristics of Blast Furnace Slag Cement Mortar Using Chlorine Bypass System-Dust as Alkali Activator (Chlorine Bypass System-Dust를 알칼리 자극제로 사용한 고로슬래그 시멘트 모르타르의 공학적 특성)

  • Han, Min-Cheol;Lee, Dong-Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.235-244
    • /
    • 2020
  • This study conducted a series of studies to offer a novel method of using CBS-dust that produced as by-product in the manufacture of cement. Four different contents of BS and CBS-dust were adopted for test parameters of this study. Mortar with 50% of W/B was fabricated. First, in the case of the fresh mortar, the flow decreased as the CBS-dust replacement rate increased, but the binder composition ratio BS 45% and 65% showed higher fl ow than Pl ain when repl acing CBS-dust 5%. In the case of air content, overall, the tendency was proportional to the CBS-dust replacement rate, and chloride tended to exceed the reference value at all replacement rates except for the CBS-dust 0% replacement. The compressive strength of the hardened mortar shows the resul t that the strength is improved when the CBS-dust is repl aced by 5% to 10%, and the CSH gel and structure formation is confirmed by microstructure analysis through the hydration reaction when the CBS-dust is replaced. Therefore, for a given condition CBS-dust is used as a early-strength admixture in a concrete secondary product that uses a large amount of admixture without reinforcing bars it can be an effective method for enhancing the strength of concrete as an alkali activator.

A review on the effect of marble waste on properties of green concrete

  • Rachid Djebien;Amel Bouabaz;Yassine Abbas;Yasser N. Ziada
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.63-74
    • /
    • 2023
  • All production and consumption activities produce wastes, which often cause damage to our environment and multiple risks to the human health. The valorization of these wastes in concrete technology is a future solution that will allow finding other construction materials sources, optimizing energy consumption and protecting the environment. Among these wastes, there is the marble waste. Every year, huge amount of marble waste is discarded as dust or aggregates form, in open-air storage areas causing serious problems for the environment and public health. In this context, the incorporation of marble waste as a replacement of ordinary aggregates or cement in concrete composition is actively investigated by researchers. This paper presents a comprehensive review of published studies over the last 20 years, dealing the effect of marble waste on fresh and hardened properties of concrete. Most of the studies carried out have used marble waste as dust with substitution rates between 5 and 20%. Besides the economic and ecological benefits, this review showed that marble waste can improve the physical, mechanical and durability properties of concrete. This improvement depends on the form (dust, fine aggregate or coarse aggregate), substitution method (as cement or aggregates replacement) and substitution rate of marble waste. Additionally, the review results showed that the use of 10-15% of marble waste dust as cement substitution can lead to increase the compressive strength.

A Study on the Emission and Dispersion of Particulate Matter from a Cement Plant (한 시멘트공장의 분진발생과 대기확산에 관한 조사연구)

  • Chang, Man-Ik;Chung, Yong;Kwon, Sook-Pyo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.16 no.1
    • /
    • pp.67-77
    • /
    • 1983
  • To investigate the an air pollution by particulate matter and its dispersion, a cement plant produceing portland cement 600,000 ton/year and its vicinity were surveyed from Obtober, 1980 to April, 1983. The survey was mainly focused on main stack emmission rate of the cement plant and particle size distribution in the dust, dustfall and total suspended particulate concentration in the area by month and distance from the stack. The results of the study were as follows; 1. The main stack emission rate was surveyed before and after the spray tower was additionally installed to the original E.P bag filter. Before the spray tower installed, the main stack emission rate was higher ($0.64g/Nm^3$) than the emission standard of Korean Environmental Preservation Law's ($0.59g/Nm^3$, amended to $0.4g/Nm^3$ on April 1983), but after the spray tower was installed, its main stack emission rate was markedly decreased to the standard ($0.43g/Nm^3$). 2. $2{\sim}3{\mu}m$ of the particle size was the largest portion (20.8%) of the dust particulate from the main stack and 50% of the frequency distribution was $1.5{\mu}m$ of the size. Most particle size was below $10{\mu}m$. 3. The spray tower reduced the dustfall to $37.81{\sim}9.76\;ton/km^2/month$ while dustfall appeared at $45.29-15.45ton/km^2/month$, in the vicinity of plant before spray tower installed 4. Mean concentrations of total suspended particulate for 24 hours of the various stations were determined in $20.6-200.0{\mu}g/m^3$, 3 stations of tham were higher than the value of Harry and William's arthmetic average standard $130{\mu}g/m^3$. 5. Linear regression between dustfall [X] and total suspended particulate[Y] concentration was an equation, Y=4.024X+11.479.[r=0.91] 6. During the whole seasons in the opposite area 100m apart from the omission source the prevailing wind direction was with estimated more than $30ton/km^2/month$, and the concentration of total suspended particulate for 24 hours averaging time was more than $140{\mu}g/m^3$ in the same area and direction. 7. Assuming the wind direction were constant through the day dustfalls for a day were estimated at $13.40ton/km^2/day,\;10.79ton/km^2/day$ and $4.55ton/km^2/day$ at various distances of 100m, 500m and 1,500m from the emission source respectively. 8. In the simutalion of dustfall and suspended dust by area, Gaussian dispersion model modified by size distribution of particulate matter was not applicated since the emission of dust were from multi sources other them stack. From the above results, it could be applied that the dispersion of dust from the cement plant is estimated and regulated for the purpose of environmental protection.

  • PDF

Fine Dust Adsorption of Cement Matrix Using Sepiolite (세피올라이트를 활용한 시멘트 경화체의 미세먼지 흡착 특성 )

  • Jeon, Eun-Yeong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.71-72
    • /
    • 2023
  • As industrialization and urbanization accelerate, environmental issues have moved from local concerns to global issues. Among them, air pollution is the most important issue. Modern people spend more than 88% of their day indoors, but the concentration of fine dust and pollutants flowing indoors is increasing. The indoor environment has its own complexity, and various substances used indoors, such as building materials, furniture, electronics, and cleaning agents, emit chemical substances and cause various diseases. Therefore, when selecting building materials and interior finishing materials, the pollutant emission and adsorption capacity must be greatly considered. These considerations will ensure the construction of a sustainable future environment and a healthy life within that environment. Therefore, in order to reduce the generation of indoor air pollutants, this study aims to examine the fine dust adsorption properties of cement hardening materials using sepiolite, which has a porous structure and high absorption power among clay minerals. As a result of the experiment, it was found that the concentration of fine dust decreased as the addition rate of sepiolite increased. It is believed that the fine dust concentration was reduced due to the high porosity due to the microfibrous structure and large specific surface area of sepiolite, which has a porous structure among clay minerals. It is believed that these experimental results can be used as basic research for future use of sepiolite as a construction material.

  • PDF