Acknowledgement
This research was funded by the CNNC Key Laboratory of Nuclear Industry Simulation Technology External Open Fund Project (B220631).
References
- J. Ma, J. Jiang, Applications of fault detection and diagnosis methods in nuclear power plants: a review, Prog. Nucl. Energy 53 (3) (2011) 255-266. https://doi.org/10.1016/j.pnucene.2010.12.001
- D. Bailey, E. Wright, Practical SCADA for Industry, Newnes, Oxford, UK, 2003.
- E. Gursel, B. Reddy, A. Khojandi, M. Madadi, J.B. Coble, V. Agarwal, V. Yadav, R. L. Boring, Using artificial intelligence to detect human errors in nuclear power plants: a case in operation and maintenance, Nucl. Eng. Technol. 55 (2) (2023) 603-622. https://doi.org/10.1016/j.net.2022.10.032
- H. Kim, M.G. Na, G. Heo, Application of monitoring, diagnosis, and prognosis in thermal performance analysis for nuclear power plants, Nucl. Eng. Technol. 46 (6) (2014) 737-752. https://doi.org/10.5516/NET.04.2014.720
- M.G. Fernandez, K. Higley, A. Tokuhiro, K. Welter, W.K. Wong, H. Yang, Status of research and development of learning-based approaches in nuclear science and engineering: a review, Nucl. Eng. Des. 359 (2020), 110479.
- J. Contreras, R. Espinola, F.J. Nogales, A.J. Conejo, ARIMA models to predict next-day electricity prices, IEEE Trans. Power Apparatus Syst. 18 (3) (2003) 1014-1020. https://doi.org/10.1109/TPWRS.2002.804943
- B.N. Saha, N. Ray, H. Zhang, Snake validation: a PCA-based outlier detection method, IEEE Signal Process. Lett. 16 (6) (2009) 549-552. https://doi.org/10.1109/LSP.2009.2017477
- L.-J. Cao, K.-S. Chua, W.-K. Chong, H.-P. Lee, Q.-M. Gu, A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine, Neurocomputing 55 (1-2) (2003) 321-336. https://doi.org/10.1016/S0925-2312(03)00433-8
- T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.-Y. Wu, An efficient k-means clustering algorithm: analysis and implementation, IEEE Trans. Pattern Anal. Mach. Intell. 24 (7) (2002) 881-892. https://doi.org/10.1109/TPAMI.2002.1017616
- T. Cover, P. Hart, in: Nearest Neighbor Pattern Classification, IEEE T. Inform. Theory, IT, 1967, pp. 21-27, 13.
- M.M. Breunig, H.P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers, in: ACM SIGMOD Int. Conf. On Management of Data, 2000. Dalles, USA, May 15-18.
- A. Banerjee, P. Burlina, C. Diehl, A support vector method for anomaly detection in hyperspectral imagery, IEEE Trans. Geosci. Electron. 44 (8) (2006) 2282-2291. https://doi.org/10.1109/TGRS.2006.873019
- K. Hundman, V. Constantinou, C. Laporte, I. Colwell, T. Soderstrom, Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding, in: KDD 2018 Deep Learning Day, 2018. London, UK, August 19-23.
- Z.Z. Darban, G.I. Webb, S.-R. Pan, C.C. Aggarwal, M. Salehi, Deep Learning for Time Series Anomaly Detection: A Survey, 2022 arXiv: 2211.05244vol. 2.
- B. Zong, Q. Song, M.R. Min, W. Cheng, C. Lumezanu, D. Cho, H.-F. Chen, Deep autoencoding Gaussian mixture model for unsupervised anomaly detection, in: 6th International Conference on Learning Representations, 2018. Vancouver, Canada, April 30 - May 3.
- J. Audibert, P. Michiardi, F. Guyard, S. Marti, M.A. Zuluaga, USAD: unsupervised anomaly detection on multivariate time series, in: The 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Virtual), 2020. July 6-10.
- Y. Su, Y.-J. Zhao, C.-H. Niu, R. Liu, W. Sun, D. Pei, Robust anomaly detection for multivariate time series through stochastic recurrent neural network, in: 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019. Anchorage, USA, August 4-8.
- D. Li, D.-C. Chen, L. Shi, B.-H. Jin, J. Goh, S.K. Ng, MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks, in: 28th International Conference on Artificial Neural Networks, 2019. Munich, Germany, September 17-19.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, in: The 31st International Conference on Neural Information Processing Systems, 2017. Long Beach, USA, December 4-8.
- J.-H. Xu, H.-X. Wu, J.-M. Wang, M.-S. Long, Anomaly Transformer: time series anomaly detection with association discrepancy, in: The 10th International Conference on Learning Representations (Virtual), 2022. April 25-29.
- X.-X. Wang, D.-C. Pi, X.-Y. Zhang, H. Liu, C. Guo, Variational transformer-based anomaly detection approach for multivariate time series, Measurement 191 (2022), 110791.
- S. Tuli, G. Casale, N.R. Jennings, TranAD: deep transformer networks for anomaly detection in multivariate time series data, in: 48th International Conference on Very Large Data Bases, 2022. Sydney, Australia, September 5-9.
- W.-F. Liu, P.P. Pokharel, J.C. Principe, Correntropy: a localized similarity measure, in: 2006 International Joint Conference on Neural Networks, 2006. Vancouver, Canada, July 16-21.
- N. Khentout, G. Magrotti, Fault supervision of nuclear research reactor systems using artificial neural networks: a review with results, Ann. Nucl. Energy 185 (2023), 109684.
- E.Y. Chow, A. S Willsky, Analytical redundancy and the design of robust failure detection systems, IEEE Trans. Automat. Control 29 (1984) 603-614. https://doi.org/10.1109/TAC.1984.1103593
- M. Basseville, Detecting changes in signals and systems-A survey, Automatica 24 (1988) 309-326. https://doi.org/10.1016/0005-1098(88)90073-8
- R. Isermann, Process fault detection based on modeling and estimation methods-A survey, Automatica 20 (1984) 387-404. https://doi.org/10.1016/0005-1098(84)90098-0
- R.V. Beard, Failure Accommodation in Linear Systems through Self-Reconfiguration, MIT, Cambridge, MA, USA, 1971.
- S.S. Godbole, Applications of kalman filtering technique to nuclear reactors, IEEE Trans. Nucl. Sci. 20 (1973) 661-667. https://doi.org/10.1109/TNS.1973.4326977
- N. Khentout, H. Salhi, G. Magrotti, D. Merrouche, Fault monitoring and accommodation of the heat exchanger parameters of Triga-Mark II nuclear research reactor using model-based analytical redundancy, Prog. Nucl. Energy 109 (2018) 97-112. https://doi.org/10.1016/j.pnucene.2018.02.019
- J.W. Hines, E. Davis, Lessons learned from the US nuclear power plant on-line monitoring programs, Prog. Nucl. Energy 46 (3-4) (2005) 176-189. https://doi.org/10.1016/j.pnucene.2005.03.003
- B.M. Wise, N.B. Gallagher, The process chemometrics approach to process monitoring and fault detection, J. Process Control 6 (1996) 329-348. https://doi.org/10.1016/0959-1524(96)00009-1
- J.W. Hines, R.E. Uhrig, D.J. Wrest, Use of autoassociative neural networks for signal validation, J. Intell. Rob. Syst. 21 (1998) 143-154. https://doi.org/10.1023/A:1007981322574
- N. Kaistha, B.R. Upadhyaya, Incipient fault detection and isolation of field devices in nuclear power systems using principal component analysis, Nucl. Technol. 136 (2001) 221-230. https://doi.org/10.13182/NT01-A3240
- N. Zavaljevskl, K.C. Gross, Sensor fault detection in nuclear power plants using multivariate state estimation technique and support vector machines, in: The Third International Conference of the Yugoslav, Nuclear Society, Belgrade, Yugoslavia, 2000. Oct 2-5.
- A. Papaoikonomou, J. Wingate, V. Verma, et al., Deep learning techniques for in-core perturbation identification and localization of time-series nuclear plant measurements, Ann. Nucl. Energy 178 (2022), 109373.
- S. Ryu, B. Jeon, H. Seo, et al., Development of deep autoencoder-based anomaly detection system for HANARO, Nucl. Eng. Technol. 55 (2) (2023) 475-483. https://doi.org/10.1016/j.net.2022.10.009
- J.C. Principe, Information Theoretic Learning: Renyi's Entropy and Kernel Perspectives, Springer, New York, 2010.
- P.P. Pokharel, W.-F. Liu, J.C. Principe, A low complexity robust detector in impulsive noise, Signal Process. 89 (10) (2009) 1902-1909. https://doi.org/10.1016/j.sigpro.2009.03.027
- X.-B. Chen, J. Yang, J. Liang, Q.-L. Ye, Recursive robust least squares support vector regression based on maximum correntropy criterion, Neurocomputing 97 (2012) 63-73. https://doi.org/10.1016/j.neucom.2012.05.004
- W.-C. Lu, J.-D. Duan, P. Wang, W.-T. Ma, S. Fang, Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and maximum mixture correntropy long short-term memory neural network, Int. J. Elec. Power. 144 (2023), 108552.
- B.W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall, London, 1986, pp. 48-49.
- S. Kollias, M. Yu, J. Wingate, et al., Machine learning for analysis of real nuclear plant data in the frequency domain, Ann. Nucl. Energy 177 (2022), 109293.
- X. Li, T. Huang, K. Cheng, et al., Research on anomaly detection method of nuclear power plant operation state based on unsupervised deep generative model, Ann. Nucl. Energy 167 (2022), 108785.
- H.-W. Xu, W.-X. Chen, N.-W. Zhao, Z.-Y. Li, J.-H. Bu, Z.-H. Li, Y. Liu, Y.J. Zhao, D. Pei, Y. Feng, J. Chen, Z.-G. Wang, H.-L. Qiao, Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications, in: The 2018 World Wide Web Conference, April 23-27, 2018. Lyon, France.
- A. Siffer, P.A. Fouque, A. Termier, et al., Anomaly detection in streams with extreme value theory, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax NS, 2017. Canada, August 13-17.