DOI QR코드

DOI QR Code

Radiation-induced thermal conductivity degradation modeling of zirconium

  • Received : 2022.08.11
  • Accepted : 2023.11.15
  • Published : 2024.04.25

Abstract

This study presents a radiation-induced thermal conductivity degradation (TCD) model of zirconium as compared to the conventional UO2 TCD model. We derived the governing factors of the radiation-induced TCD model, such as maximum TCD value and temperature range of TCD. The maximum TCD value was derived by two methods, in which 1) experimental result of 32 % TCD was directly utilized as the maximum TCD value and 2) a theoretical approach based on dislocation was applied to derive the maximum TCD value. Further, the temperature range of TCD was determined to be 437-837 K by 1) experimental results of post-annealing of irradiation hardening as compared to 2) the rate theory and thermal equilibrium. Consequently, the radiation-induced TCD model of zirconium was derived to be $f_r=1-{\frac{0.32}{1+{\exp}\,\{(T-637)/45\}}}$. Because the thermal conductivity of zirconium is one of the factors determining the storage and transport system, this newly proposed model could improve the safety analysis of spent fuel storage systems.

Keywords

Acknowledgement

This work was supported by the Institute for Korea Spent Nuclear Fuel (iKSNF) and the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT, MSIT) (No. 2021M2E1A1085226).

References

  1. U. S. NRC, Standard review plan for spent fuel dry storage systems at a general license facility, NUREG-1536 Rev. 1 (2010). 
  2. D. Kook, J. Choi, J. Kim, Y. Kim, Review of spent fuel integrity evaluation for dry storage, Nucl. Eng. Technol. 45 (1) (2013) 115-124, https://doi.org/10.5516/NET.06.2012.016. 
  3. J.-M. Lee, H.-A. Kim, D.-H. Kook, Y.-S. Kim, A review of factors influencing the hydride reorientation phenomena in zirconium alloy cladding during long-term dry storage, Kor. J. Met. Mater. 56 (2) (Feb. 2018) 79-92, https://doi.org/10.3365/KJMM.2018.56.2.79. 
  4. R. Pulavarthy, B. Wang, K. Hattar, M.A. Haque, Thermal conductivity of self-ion irradiated nanocrystalline zirconium thin films, Thin Solid Films 638 (2017) 17-21, https://doi.org/10.1016/j.tsf.2017.07.035. 
  5. A.T. Motta, A. Couet, R.J. Comstock, Corrosion of zirconium alloys used for nuclear fuel cladding, Annu. Rev. Mater. Res. 45 (1) (Jul. 2015) 311-343, https://doi.org/10.1146/annurev-matsci-070214-020951. 
  6. D. R. Olander, "Light Water Reactor Fuel Design and Performance," K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. B. T.-E. of M. S. and T. Veyssiere, Eds. Oxford: Elsevier, 2001, pp. 4490-4504. doi: https://doi.org/10.1016/B0-08-043152-6/00787-7. 
  7. L.M. Howe, W.R. Thomas, The effect of neutron irradiation on the tensile properties of zircaloy-2, J. Nucl. Mater. 2 (3) (1960) 248-260, https://doi.org/10.1016/0022-3115(60)90059-3. 
  8. D.D. Lanning, C.E. Beyer, C.L. Painter, FRAPCON-3: Modifications to Fuel Rod Material Properties and Performance Models for High-Burnup Application, United States, 1997 [Online]. Available: http://inis.iaea.org/search/search.aspx?orig_q=RN:29036403. 
  9. P.G. Lucuta, H. Matzke, I.J. Hastings, A pragmatic approach to modelling thermal conductivity of irradiated UO2 fuel: review and recommendations, J. Nucl. Mater. 232 (2) (1996) 166-180, https://doi.org/10.1016/S0022-3115(96)00404-7. 
  10. P.G. Lucuta, H. Matzke, R.A. Verrall, Modelling of UO2-based SIMFUEL thermal conductivity the effect of the burnup, J. Nucl. Mater. 217 (3) (1994) 279-286, https://doi.org/10.1016/0022-3115(94)90377-8. 
  11. P.G. Lucuta, R.A. Verrall, H. Matzke, B.J. Palmer, Microstructural features of SIMFUEL - simulated high-burnup UO2-based nuclear fuel, J. Nucl. Mater. 178 (1) (1991) 48-60, https://doi.org/10.1016/0022-3115(91)90455-G. 
  12. F. Onimus, J.L. B'echade, 4.01 - radiation effects in zirconium alloys, in: R.J. M. Konings (Ed.), Comprehensive Nuclear Materials, Elsevier, Oxford, 2012, pp. 1-31, https://doi.org/10.1016/B978-0-08-056033-5.00064-1. 
  13. A.M. Ross, The Dependence of the Thermal Conductivity of Uranium Dioxide on Density, Microstructure, Stoichiometry and Thermal-Neutron Irradiation, Canada, 1960 [Online]. Available: https://www.osti.gov/biblio/4109500. 
  14. D. Staicu, in: R.J.M. Konings, R.E. B.T.-C.N. M. (Second E. Stoller (Eds.), 2.06 - Thermal Properties of Irradiated UO2 and MOX☆, Elsevier, Oxford, 2020, pp. 149-172, https://doi.org/10.1016/B978-0-12-803581-8.11726-6. 
  15. R.E. Stoller, Preliminary model of radiation damage in ceramics, J. Am. Ceram. Soc. 73 (8) (Aug. 1990) 2446-2451, https://doi.org/10.1111/j.1151-2916.1990.tb07611.x. 
  16. K. Nordlund, et al., Primary radiation damage: a review of current understanding and models, J. Nucl. Mater. 512 (2018) 450-479, https://doi.org/10.1016/j.jnucmat.2018.10.027. 
  17. D.O. Northwood, Neutron radiation damage in zirconium and its alloys, Radiat. Eff. 22 (1974) 139-140. 
  18. D.O. Northwood, Irradiation damage in zirconium and its alloys, AT. Energy Rev. 15 (1977) 547. 
  19. G.S. Was (Ed.), Point Defect Formation and Diffusion BT - Fundamentals of Radiation Materials Science: Metals and Alloys, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 155-190, https://doi.org/10.1007/978-3-540-49472-0_4. 
  20. L.K. Mansur, Theory of transitions in dose dependence of radiation effects in structural alloys, J. Nucl. Mater. 206 (2) (1993) 306-323, https://doi.org/10.1016/0022-3115(93)90130-Q. 
  21. S. Il Choi, G.-G. Lee, J. Kwon, J.H. Kim, Modeling of sink-induced irradiation growth of single-crystal and polycrystal zirconiums in nuclear reactors, J. Nucl. Mater. 468 (2016) 56-70, https://doi.org/10.1016/j.jnucmat.2015.11.014. 
  22. C. Lemaignan, in: R.J.M.B.T.-C.N.M. Konings (Ed.), 2.07 - Zirconium Alloys: Properties and Characteristics, Elsevier, Oxford, 2012, pp. 217-232, https://doi.org/10.1016/B978-0-08-056033-5.00015-X. 
  23. B. Deng, A. Chernatynskiy, P. Shukla, S.B. Sinnott, S.R. Phillpot, Effects of edge dislocations on thermal transport in UO2, J. Nucl. Mater. 434 (1) (2013) 203-209, https://doi.org/10.1016/j.jnucmat.2012.11.043. 
  24. J. Callaway, Model for lattice thermal conductivity at low temperatures, Phys. Rev. 113 (4) (Feb. 1959) 1046-1051, https://doi.org/10.1103/PhysRev.113.1046. 
  25. Y. Cheng, M. Nomura, S. Volz, S. Xiong, Phonon-dislocation interaction and its impact on thermal conductivity, J. Appl. Phys. 130 (4) (Jul. 2021), 40902, https://doi.org/10.1063/5.0054078. 
  26. Q. Dong, H. Qin, Z. Yao, M.R. Daymond, Irradiation damage and hardening in pure Zr and Zr-Nb alloys at 573 K from self-ion irradiation, Mater. Des. 161 (2019) 147-159, https://doi.org/10.1016/j.matdes.2018.11.017. 
  27. B. V Cockeram, R.W. Smith, K.J. Leonard, T.S. Byun, L.L. Snead, Development of microstructure and irradiation hardening of Zircaloy during low dose neutron irradiation at nominally 358◦C, J. Nucl. Mater. 418 (1-3) (2011) 46-61, https://doi.org/10.1016/j.jnucmat.2011.07.006. 
  28. F. Christien, A. Barbu, Cluster Dynamics modelling of irradiation growth of zirconium single crystals, J. Nucl. Mater. 393 (1) (2009) 153-161, https://doi.org/10.1016/j.jnucmat.2009.05.016.