DOI QR코드

DOI QR Code

On-line minimum loss control strategy of IPMSM in torque-controlled application

  • Young‑Wook Kim (School of Electrical Engineering, Chungbuk National University) ;
  • Hwigon Kim (Electric Power Research Institute, Seoul National University) ;
  • Jaeyeon Park (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Seung‑Ki Sul (Department of Electrical and Computer Engineering, Seoul National University)
  • Received : 2023.10.31
  • Accepted : 2024.01.21
  • Published : 2024.05.20

Abstract

This study proposes an on-line minimum loss (ML) control strategy that considers the iron and copper losses of an interior permanent magnet synchronous motor in torque-controlled applications. The proposed ML control strategy utilizes a constrained optimization problem to satisfy torque reference tracking and loss minimization. An equivalent iron loss resistance circuit is adopted for the loss minimization. To solve the optimization problem, the Lagrange multiplier method is applied through a numerical analysis algorithm. The resulting solution provides the optimal current reference for every sampling instant. The Lagrange multiplier method needs parameters such as magnetic flux linkages, dynamic inductances, and iron loss resistance. Fundamental magnetic flux linkages are estimated using a flux observer, and the dynamic inductances are estimated with high-frequency voltage signal injection. The proposed iron loss resistance estimator estimates the equivalent iron resistance without any preliminary experiments. DC input power is measured using a current sensor for the accurate on-line estimation of iron loss resistance. To analyze the effectiveness of ML control compared with conventional maximum torque per ampere control, finite element analysis is used. The feasibility of the proposed ML control strategy is verified through simulation and experiments.

Keywords

Acknowledgement

Open Access funding enabled and organized by Seoul National University.

References

  1. Bae, B.-H., Patel, N., Schulz, S., Sul, S.-K.: New field weakening technique for high saliency interior permanent magnet motor. In: 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, 2003., Salt Lake City, UT, USA, vol. 2, pp. 898-905 (2003)
  2. Dianov, A., Tinazzi, F., Calligaro, S., Bolognani, S.: Review and classification of MTPA control algorithms for synchronous motors. IEEE Trans. Power Electron. 37(4), 3990-4007 (2022) https://doi.org/10.1109/TPEL.2021.3123062
  3. Kim, W., Kim, S.: MTPA operation scheme with current feedback in V/f control for PMSM drives. J. Power Electron. 20(2), 524-537 (2020) https://doi.org/10.1007/s43236-020-00045-3
  4. Zhang, Z., Shen, A., Li, P., Luo, X., Tang, Q.: MTPA-based high-frequency square wave voltage signal injection strategy for IPMSM control. J. Power Electron. 21(10), 1461-1472 (2021) https://doi.org/10.1007/s43236-021-00284-y
  5. Liu, G., Yang, Y., Chen, Q.: Virtual signal injected MTPA control for DTC five-phase IPMSM drives. J. Power Electron. 19(4), 956-967 (2019)
  6. Morimoto, S., Tong, Y., Takeda, Y., Hirasa, T.: Loss minimization control of permanent magnet synchronous motor drives. IEEE Trans. Ind. Electron. 41(5), 511-517 (1994) https://doi.org/10.1109/41.315269
  7. Zhu, Z.Q., Chen, Y.S., Howe, D.: Iron loss in permanent-magnet brushless AC machines under maximum torque per ampere and fux weakening control. IEEE Trans. Magn. 38(5), 3285-3287 (2002) https://doi.org/10.1109/TMAG.2002.802296
  8. Bazzi, A.M., Krein, P.T.: Review of methods for real-time loss minimization in induction machines. IEEE Trans. Ind. Appl. 46(6), 2319-2328 (2010) https://doi.org/10.1109/TIA.2010.2070475
  9. Cavallaro, C., Di Tommaso, A.O., Miceli, R., Raciti, A., Galluzzo, G.R., Trapanese, M.: Efficiency enhancement of permanent-magnet synchronous motor drives by online loss minimization approaches. IEEE Trans. Ind. Electron. 52(4), 1153-1160 (2005) https://doi.org/10.1109/TIE.2005.851595
  10. Adawey, J.B., Yamamoto, S., Kano, T., Ara, T.: Maximum efficiency drives of interior permanent magnet synchronous motor considering iron loss and cross-magnetic saturation. In: 2009 International Conference on Electrical Machines and Systems, Tokyo, Japan, pp. 1-6 (2009)
  11. Lee, J., Nam, K., Choi, S., Kwon, S.: Loss-minimizing control of PMSM with the use of polynomial approximations. IEEE Trans. Power Electron. 24(4), 1071-1082 (2009) https://doi.org/10.1109/TPEL.2008.2010518
  12. Siahbalaee, J., Vaez-Zadeh, S., Tahami, F.: A loss minimization control strategy for direct torque controlled interior permanent magnet synchronous motors. J. Power Electron. 9(6), 940-948 (2009) https://doi.org/10.1109/PES.2010.5589860
  13. Pairo, H., Khanzade, M., Shoulaie, A.: Loss minimization control of interior permanent magnet synchronous motors considering self-saturation and cross-saturation. J. Power Electron. 18(4), 1099-1110 (2018)
  14. Jung, S.-Y., Hong, J., Nam, K.: Current minimizing torque control of the IPMSM using Ferrari's method. IEEE Trans. Power Electron. 28(12), 5603-5617 (2013) https://doi.org/10.1109/TPEL.2013.2245920
  15. Jeong, Y., Sul, S., Hiti, S., Rahman, K.M.: Online minimum-copper-loss control of an interior permanent-magnet synchronous machine for automotive applications. IEEE Trans. Ind. Appl. 42(5), 1222-1229 (2006) https://doi.org/10.1109/TIA.2006.880910
  16. Kim, H.-S., Lee, Y., Sul, S.-K., Yu, J., Oh, J.: Online MTPA control of IPMSM based on robust numerical optimization technique. IEEE Trans. Ind. Appl. 55(4), 3736-3746 (2019) https://doi.org/10.1109/TIA.2019.2904567
  17. Kim, H.-S., Sul, S.-K.: Real-time torque control of IPMSM under flux variations. IEEE J. Emerg. Sel. Top. Power Electron. 10(3), 3345-3356 (2022) https://doi.org/10.1109/JESTPE.2020.3032463
  18. Zhang, Y., Qi, R.: High-efficiency flux weakening drive for IPMSM based on model predictive control. IEEE Trans. Transp. Electrif. 8(3), 3503-3511 (2022) https://doi.org/10.1109/TTE.2022.3160454
  19. Vaez, S., John, V.I., Rahman, M.A.: An on-line loss minimization controller for interior permanent magnet motor drives. IEEE Trans. Energy Convers. 14(4), 1435-1440 (1999) https://doi.org/10.1109/60.815086
  20. Balamurali, A., Feng, G., Lai, C., Tjong, J., Kar, N.C.: Maximum efficiency control of PMSM drives considering system losses using gradient descent algorithm based on DC power measurement. IEEE Trans. Energy Convers. 33(4), 2240-2249 (2018) https://doi.org/10.1109/TEC.2018.2852219
  21. Hu, D., Alsmadi, Y.M., Xu, L.: High-fidelity nonlinear IPM modeling based on measured stator winding flux linkage. IEEE Trans. Ind. Appl. 51(4), 3012-3019 (2015) https://doi.org/10.1109/TIA.2015.2407864
  22. Lee, J., Kwon, Y.-C., Sul, S.-K.: Identification of IPMSM flux-linkage map for high-accuracy simulation of IPMSM drives. IEEE Trans. Power Electron. 36(12), 14257-14266 (2021) https://doi.org/10.1109/TPEL.2021.3084558
  23. JMAG website: http://www.jmag-international.com/
  24. Yoo, J., Kim, H.-S., Sul, S.-K.: Design of frequency-adaptive flux observer in PMSM drives robust to discretization error. IEEE Trans. Ind. Electron. 69(4), 3334-3344 (2022) https://doi.org/10.1109/TIE.2021.3075854
  25. MITSUBISHI ELECTRIC website: https://www.mitsubishielectric.com/semiconductors/powerdevices/design_support/simulator/index.html
  26. Chen, X., Wang, J., Sen, B., Lazari, P., Sun, T.: A high-fidelity and computationally efficient model for interior permanent-magnet machines considering the magnetic saturation, spatial harmonics, and iron loss effect. IEEE Trans. Ind. Electron. 62(7), 4044-4055 (2015) https://doi.org/10.1109/TIE.2014.2388200