References
- Derammelaere, S., et al.: The efficiency of hybrid stepping motors: analyzing the impact of control algorithms. IEEE Ind. Appl. Mag. 20(4), 50-60 (2014) https://doi.org/10.1109/MIAS.2013.2288403
- Tsui, K.W.H., Cheung, N.C., Yuen, K.C.W.: Novel modeling and damping technique for hybrid stepping motor. IEEE Trans. Ind. Electron. 50(1), 202-211 (2009)
- Bodson, M., Sata, J.S., Silver, S.R.: Spontaneous speed reversals in stepper motors. IEEE Trans. Control Syst. Technol. 14(2), 369-373 (2006) https://doi.org/10.1109/TCST.2005.863675
- Yang, S.M., Kuo, E.L.: Damping a hybrid stepping motor with estimated position and velocity. IEEE Trans. Power Electron. 18(3), 880-887 (2003) https://doi.org/10.1109/TPEL.2003.810836
- Le, K.M., Hoang, H.V., Jeon, J.W.: An advanced closed-loop control to improve the performance of hybrid stepper motors. IEEE Trans. Power Electron. 32(9), 7244-7255 (2017) https://doi.org/10.1109/TPEL.2016.2623341
- Kim, S.H.: Electric Motor Control, DC AC and BLDC Motors. Chap. 7. Elsevier Inc., Amsterdam (2017)
- Gabriel, R., Leonhard, W., Nordby, C.J.: Field-oriented control of a standard AC motor using microprocessors. IEEE Trans. Ind. Appl. 16(2), 186-192 (1980) https://doi.org/10.1109/TIA.1980.4503770
- Jahns, T.M., Kliman, G.B., Neumann, T.W.: Interior permanent-magnet synchronous motors for adjustable-speed drives. IEEE Trans. Ind. Appl. IA-22(4), 738-747 (1986) https://doi.org/10.1109/TIA.1986.4504786
- Morimoto, S., Takeda, Y., Hirasa, T., Taniguchi, K.: Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity. IEEE Trans. Ind. Appl. 26(5), 866-871 (1990) https://doi.org/10.1109/28.60058
- Kim, W., Yang, C., Chung, C.C.: Design and implementation of simple field-oriented control for permanent magnet stepper motors without DQ transformation. IEEE Trans. Magn. 47(10), 4231-4234 (2011) https://doi.org/10.1109/TMAG.2011.2157956
- Hanying, G., Shukang, C., Li. S., Erliang, K.: Maximum torque/current control of 2-phase hybrid stepping motor. In: IEEE International Electric Machines and Drives Conference, pp. 1781-1786 (2003)
- Kim, D.H., Kim, S.H.: Vector control for two-phase hybrid stepping motors. In: The 52th KIEE Summer Conference, pp. 1257-1258 (2021)
- Kim, D.H., Kim, S.H.: Compensation of initial position error and torque ripple in vector control of two-phase hybrid stepping motors. Trans. Korean Inst. Power Electron. 27(6), 481-488 (2022)
- Qin, S., Huang, Z., Wang, X.: Optical angular encoder installation error measurement and calibration by ring laser gyroscope. IEEE Trans. Instrum. Meas.Instrum. Meas. 59(3), 506-511 (2010) https://doi.org/10.1109/TIM.2009.2022104
- Wu, S.-T., Chen, J.-Y., Wu, S.-H.: A rotary encoder with an eccentrically mounted ring magnet. IEEE Trans. Instrum. Meas. Instrum. Meas. 63(8), 1907-1915 (2014) https://doi.org/10.1109/TIM.2014.2302243
- Zhao, R., Zhang, Z., Tie, J.: Influence of encoder eccentricity on speed measurement and elimination approach. Int. Conf. Netw. Comput. Inf. Secur. 63(8), 63-66 (2011)
- Qasim, M., Kanjiya, P., Khadkikar, V.: Optimal current harmonic extractor based on unified ADALINEs for shunt active power filters. IEEE Trans. Power Electron. 29(12), 6383-6393 (2014) https://doi.org/10.1109/TPEL.2014.2302539
- Qiu, T., Wen, X., Zhao, F.: Adaptive-linear-neuron-based dead-time effects compensation scheme for PMSM drives. IEEE Trans. Power Electron. 31(3), 2530-2538 (2016)
- Wang, L., Zhu, Z.Q., Bin, H., Gong, L.: A commutation error compensation strategy for high-speed brushless DC drive based on adaline filter. IEEE Trans. Ind. Electron. 68(5), 3728-3738 (2021) https://doi.org/10.1109/TIE.2020.2984445
- Bose, B.K.: Neural network applications in power electronics and motor drives-an introduction and perspective. IEEE Trans. Ind. Electron. 54(1), 14-33 (2007) https://doi.org/10.1109/TIE.2006.888683