DOI QR코드

DOI QR Code

Adaptive linear neuron-based encoder measurement error compensation in vector control of two-phase stepping motors

  • Do‑Hyeon Kim (Department of Electrical and Medical Convergent Engineering, Kangwon National University) ;
  • Sang‑Hoon Kim (Department of Electrical and Medical Convergent Engineering, Kangwon National University)
  • Received : 2023.12.05
  • Accepted : 2024.01.21
  • Published : 2024.05.20

Abstract

This paper proposes an encoder measurement error compensation method using an adaptive linear neuron, a type of artificial neural network, for use in the vector control of two-phase stepping motors. Stepping motors can have an asymmetric structure due to an eccentricity that occurs in the manufacturing and assembly process. When performing vector control with a flux angle measured by an incremental encoder attached to stepping motors with eccentricity, the following two kinds of encoder measurement errors occur. First, an offset position error occurs during the forced excitation process for the initial rotor position alignment. Second, sinusoidal position and speed errors with a frequency equal to the mechanical speed occur. In this study, how the eccentricity causes offset and sinusoidal measurement errors in addition to the phenomena caused by these encoder measurement errors are analyzed. From these analyses, an encoder error compensation method based on an adaptive linear neuron is proposed. The validity of the proposed encoder errors compensation methods is verified through experiments on a two-phase stepping motor drive system.

Keywords

References

  1. Derammelaere, S., et al.: The efficiency of hybrid stepping motors: analyzing the impact of control algorithms. IEEE Ind. Appl. Mag. 20(4), 50-60 (2014) https://doi.org/10.1109/MIAS.2013.2288403
  2. Tsui, K.W.H., Cheung, N.C., Yuen, K.C.W.: Novel modeling and damping technique for hybrid stepping motor. IEEE Trans. Ind. Electron. 50(1), 202-211 (2009)
  3. Bodson, M., Sata, J.S., Silver, S.R.: Spontaneous speed reversals in stepper motors. IEEE Trans. Control Syst. Technol. 14(2), 369-373 (2006) https://doi.org/10.1109/TCST.2005.863675
  4. Yang, S.M., Kuo, E.L.: Damping a hybrid stepping motor with estimated position and velocity. IEEE Trans. Power Electron. 18(3), 880-887 (2003) https://doi.org/10.1109/TPEL.2003.810836
  5. Le, K.M., Hoang, H.V., Jeon, J.W.: An advanced closed-loop control to improve the performance of hybrid stepper motors. IEEE Trans. Power Electron. 32(9), 7244-7255 (2017) https://doi.org/10.1109/TPEL.2016.2623341
  6. Kim, S.H.: Electric Motor Control, DC AC and BLDC Motors. Chap. 7. Elsevier Inc., Amsterdam (2017)
  7. Gabriel, R., Leonhard, W., Nordby, C.J.: Field-oriented control of a standard AC motor using microprocessors. IEEE Trans. Ind. Appl. 16(2), 186-192 (1980) https://doi.org/10.1109/TIA.1980.4503770
  8. Jahns, T.M., Kliman, G.B., Neumann, T.W.: Interior permanent-magnet synchronous motors for adjustable-speed drives. IEEE Trans. Ind. Appl. IA-22(4), 738-747 (1986) https://doi.org/10.1109/TIA.1986.4504786
  9. Morimoto, S., Takeda, Y., Hirasa, T., Taniguchi, K.: Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity. IEEE Trans. Ind. Appl. 26(5), 866-871 (1990) https://doi.org/10.1109/28.60058
  10. Kim, W., Yang, C., Chung, C.C.: Design and implementation of simple field-oriented control for permanent magnet stepper motors without DQ transformation. IEEE Trans. Magn. 47(10), 4231-4234 (2011) https://doi.org/10.1109/TMAG.2011.2157956
  11. Hanying, G., Shukang, C., Li. S., Erliang, K.: Maximum torque/current control of 2-phase hybrid stepping motor. In: IEEE International Electric Machines and Drives Conference, pp. 1781-1786 (2003)
  12. Kim, D.H., Kim, S.H.: Vector control for two-phase hybrid stepping motors. In: The 52th KIEE Summer Conference, pp. 1257-1258 (2021)
  13. Kim, D.H., Kim, S.H.: Compensation of initial position error and torque ripple in vector control of two-phase hybrid stepping motors. Trans. Korean Inst. Power Electron. 27(6), 481-488 (2022)
  14. Qin, S., Huang, Z., Wang, X.: Optical angular encoder installation error measurement and calibration by ring laser gyroscope. IEEE Trans. Instrum. Meas.Instrum. Meas. 59(3), 506-511 (2010) https://doi.org/10.1109/TIM.2009.2022104
  15. Wu, S.-T., Chen, J.-Y., Wu, S.-H.: A rotary encoder with an eccentrically mounted ring magnet. IEEE Trans. Instrum. Meas. Instrum. Meas. 63(8), 1907-1915 (2014) https://doi.org/10.1109/TIM.2014.2302243
  16. Zhao, R., Zhang, Z., Tie, J.: Influence of encoder eccentricity on speed measurement and elimination approach. Int. Conf. Netw. Comput. Inf. Secur. 63(8), 63-66 (2011)
  17. Qasim, M., Kanjiya, P., Khadkikar, V.: Optimal current harmonic extractor based on unified ADALINEs for shunt active power filters. IEEE Trans. Power Electron. 29(12), 6383-6393 (2014) https://doi.org/10.1109/TPEL.2014.2302539
  18. Qiu, T., Wen, X., Zhao, F.: Adaptive-linear-neuron-based dead-time effects compensation scheme for PMSM drives. IEEE Trans. Power Electron. 31(3), 2530-2538 (2016)
  19. Wang, L., Zhu, Z.Q., Bin, H., Gong, L.: A commutation error compensation strategy for high-speed brushless DC drive based on adaline filter. IEEE Trans. Ind. Electron. 68(5), 3728-3738 (2021) https://doi.org/10.1109/TIE.2020.2984445
  20. Bose, B.K.: Neural network applications in power electronics and motor drives-an introduction and perspective. IEEE Trans. Ind. Electron. 54(1), 14-33 (2007) https://doi.org/10.1109/TIE.2006.888683