DOI QR코드

DOI QR Code

Optimal design of control loop parameters and impedance spike suppression for 400 Hz two-module series structured inverters

  • Yihan Chen (Collage of Automation Engineering and Artificial Intelligence, Nanjing University of Posts and Telecommunications) ;
  • Honghao Guo (Collage of Automation Engineering and Artificial Intelligence, Nanjing University of Posts and Telecommunications) ;
  • Haixiao Ma (Collage of Automation Engineering and Artificial Intelligence, Nanjing University of Posts and Telecommunications) ;
  • Hui Gao (Collage of Automation Engineering and Artificial Intelligence, Nanjing University of Posts and Telecommunications)
  • Received : 2022.07.28
  • Accepted : 2023.12.02
  • Published : 2024.05.20

Abstract

The structure of a DC-DC converter connected in series with a 400 Hz inverter is widely used in aviation airborne and ground power systems to provide a medium-frequency AC power supply within a wide input voltage range. To guarantee the dynamic and steady-state performance of a multi-module series converter, it is necessary to individually optimize the control loop and the parameters of each series-connected module. In addition, it is also necessary to consider the input-output impedance matching issues of each converter. In this study, a phase-shifted full-bridge converter employing an average current control strategy is used as the input-side DC-DC converter, and a medium-frequency three-phase four-leg inverter is used as the output-side inverter. The study also conducts a small-signal modeling analysis to reveal the intrinsic relationship between the closed-loop output impedance of the input-side converter and the circuit parameters. It summarizes the optimization criteria for controlling the parameters of the voltage and current loops. By suppressing the peaks of the output impedance of the input-side converter, the impedance matching between the input- and output-side converters is ensured over the entire frequency range, ensuring the stable operation of the overall system. Finally, the correctness of the theoretical analysis is verified through simulation and experimentation.

Keywords

Acknowledgement

This study was supported by Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars to Yihan Chen with Grant number BK20160894.

References

  1. Buticchi, G., Bozhko, S., Liserre, M., Wheeler, P., Al-Haddad, K.: On-board microgrids for the more electric aircraft-technology review. IEEE Trans. Ind. Electron. 66(7), 5588-5599 (2019) https://doi.org/10.1109/TIE.2018.2881951
  2. Peng, X., Yu, L., Gong, K., et al.: Voltage balance evaluation strategy for DC-port faults in centralized aircraft ground power unit based on three-level neutral point clamped cascaded converter. J. Power Electron. 21, 1109-1122 (2021) https://doi.org/10.1007/s43236-021-00255-3
  3. Huang, Z., Yang, T., Giangrande, P., Galea, M., Wheeler, P.: Technical review of dual inverter topologies for more electric aircraft applications. IEEE Trans. Transport. Electrif. 8(2), 1966-1980 (2022) https://doi.org/10.1109/TTE.2021.3113606
  4. Benzaquen, J., He, J., Mirafzal, B.: Toward more electric powertrains in aircraft: technical challenges and advancements. CES Trans. Electr. Mach. Syst. 5(3), 177-193 (2021) https://doi.org/10.30941/CESTEMS.2021.00022
  5. Borghei, M., Ghassemi, M.: Insulation materials and systems for more- and all-electric aircraft: a review identifying challenges and future research needs. IEEE Trans. Transport. Electrif. 7(3), 1930-1953 (2021) https://doi.org/10.1109/TTE.2021.3050269
  6. Zhang, L., Ruan, X., Ren, X.: Second-harmonic current reduction for two-stage inverter with boost-derived front-end converter: control schemes and design considerations. IEEE Trans. Power Electron. 33(7), 6361-6378 (2018) https://doi.org/10.1109/TPEL.2017.2746878
  7. Chen, Z., Wang, Z., Wang, C., Chen, M.: Input ripple current characteristics of aviation static inverter. IEEE Trans. Aerosp. Electron. Syst. 49(3), 1667-1676 (2013) https://doi.org/10.1109/TAES.2013.6558011
  8. Ravuri L, Yu H, Chatterji A, Tu H, Lukic, S.: A compact 50kW high power density, hybrid 3-level paralleled T-type inverter for more electric aircraft applications. In: IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, pp. 652-657 (2021)
  9. Wu, T., Ruan, X.: Input impedance analysis of load converters in the distributed power system. Proc. CSEE 28(12), 20-25 (2008)
  10. Li, Y., Liu, J., Jiang, S., et al.: Novel impedance matching method based on negative resistors for WPT. J. Power Electron. 20, 1099-1108 (2020) https://doi.org/10.1007/s43236-020-00089-5
  11. Pratomo, L.H., Wijaya, F.D., Firmansyah, E.: Impedance matching method in two-stage converters for single phase PV-grid system. Int. J. Electr. Comput. Eng. 5(4), 626-635 (2015)
  12. Zhong, Q., Zhang, X.: Impedance-sum stability criterion for power electronic systems with two converters/sources. IEEE Access 7, 21254-21265 (2019) https://doi.org/10.1109/ACCESS.2019.2894338
  13. Zhang, L., Ruan, X.: Control schemes for reducing second harmonic current in two-stage single-phase converter: An overview from DC-bus port-impedance characteristics. IEEE Trans. Power Electron. 34(10), 10341-10358 (2019) https://doi.org/10.1109/TPEL.2019.2894647
  14. Yue, X., Wang, X., Blaabjerg, F.: Review of small-signal modeling methods including frequency-coupling dynamics of power converters. IEEE Trans. Power Electron. 34(4), 3313-3328 (2019) https://doi.org/10.1109/TPEL.2018.2848980
  15. Y. Han, Q. Wu, Y. Li and Z. Zhu.: Average inductor current measure and control strategy for multimode primary-side flyback converters. IEEE Transactions on Power Electronics, 35(12), 13096-13103 (2020). https://doi.org/10.1109/TPEL.2020.2991216
  16. Caliskan, A.C., Kocaaga, E., Kasnakoglu, C.: Average and peak current mode control comparison for full-bridge converter. 8th International Conference on Electrical and Electronics Engineering (ICEEE), Antalya, Turkey, pp. 202-206 (2021)
  17. Choi, B.G., Lee, W.S., Park, J.U., et al.: Phase-shifted full-bridge converter with coupled-inductor-based rectifier. J. Power Electron. 21, 1585-1599 (2021) https://doi.org/10.1007/s43236-021-00295-9
  18. Jegal, J.H., Kwon, M., Oh, C.Y., et al.: Implementation of three-phase four-leg inverter using SiC MOSFET for UPS applications. J. Power Electron. 21, 103-112 (2021) https://doi.org/10.1007/s43236-020-00173-w
  19. Tan, C., Chen, Q., Zhou, K., Zhang, L.: A simple high-performance current control strategy for V2G three-phase four-leg inverter with LCL flter. IEEE Trans. Transport. Electrif. 5(3), 695-701 (2019) https://doi.org/10.1109/TTE.2019.2936684
  20. Zhang, L., Yang, H., Tang, Y., Pou, J., Tolbert, L.M.: Decoupled modulation with common-mode load-voltage control for three-phase four-leg three-level inverter. IEEE Trans. Ind. Electron. 69(8), 8594-8598 (2022)  https://doi.org/10.1109/TIE.2021.3104597