DOI QR코드

DOI QR Code

Modelling atomic relaxation and bremsstrahlung in the deterministic code STREAM

  • Nhan Nguyen Trong Mai (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Kyeongwon Kim (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Deokjung Lee (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
  • 투고 : 2023.08.10
  • 심사 : 2023.11.02
  • 발행 : 2024.02.25

초록

STREAM, developed by the Computational Reactor Physics and Experiment laboratory (CORE) of the Ulsan National Institute of Science and Technology (UNIST), is a deterministic neutron- and photon-transport code primarily designed for light water reactor (LWR) analysis. Initially, the photon module in STREAM did not account for fluorescence and bremsstrahlung photons. This article presents recent developments regarding the integration of atomic relaxation and bremsstrahlung models into the existing photon module, thus allowing for the transport of secondary photons. The photon flux and photon heating computed with the newly incorporated models is compared to results obtained with the Monte Carlo code MCS. The incorporation of secondary photons has substantially improved the accuracy of photon flux calculations, particularly in scenarios involving strong gamma emitters. However, it is essential to note that despite the consideration of secondary photon sources, there is no noticeable improvement in the photon heating for LWR problems when compared to the photon heating obtained with the previous version of STREAM.

키워드

과제정보

This work was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019M2D2A1A03058371). This work was also partially supported by Korea Hydro & Nuclear Power Co., Ltd (No. A22LP10).

참고문헌

  1. B.A. Lindley, J.G. Hosking, P.J. Smith, D.J. Powney, B.S. Tollit, T.D. Newton, R. Perry, T.C. Ware, P.N. Smith, Current status of the reactor physics code WIMS and recent developments, Ann. Nucl. Energy 102 (2017) 148-157.
  2. S. Jae, N. Choi, H.G. Joo, Implementation and verification of explicit treatment of neutron/photon heating in nTRACER, in: Proceedings of ICAPP 2020, Abu Dhabi, UAE, March .
  3. X. Wang, Y. Liu, W. Martin, S. Stimpson, Implementation of 2D/1D gamma transport and gamma heating capability in MPACT, in: Proceedings of PHYSOR2020, Cambridge, UK, 2020. March 29 - April 02.
  4. N.N.T. Mai, K. Kim, M. Lemaire, T.D.C. Nguyen, W. Lee, D. Lee, Analysis of several VERA benchmark problems with the photon transport capability of STREAM, Nucl. Eng. Technol. 54 (7) (2022) 2670-2689.
  5. G.F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, 2010.
  6. T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L.J. Cox, J. Durkee, J. Elson, M. Fensin, R.A. Forster, J. Hendricks, Initial MCNP6 release overview, Nucl. Technol. 180 (3) (2012) 298-315.
  7. H. Lee, W. Kim, P. Zhang, M. Lemaire, A. Khassenov, J. Yu, Y. Jo, J. Park, D. Lee, MCS-A Monte Carlo particle transport code for large-scale power reactor analysis, Ann. Nucl. Energy 139 (2020), 107276.
  8. J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150.
  9. P.K. Romano, N.E. Horelik, B.R. Herman, A.G. Nelson, B. Forget, K. Smith, OpenMC: a state-of-the-art Monte Carlo code for Research and development, Ann. Nucl. Energy 82 (2015) 90-97.
  10. S. Choi, D. Lee, Three-dimensional method of characteristics/diamond-difference transport analysis method in STREAM for whole-core neutron transport calculation, Comput. Phys. Commun. 260 (2021), 107332.
  11. S. Choi, W. Kim, J. Choe, W. Lee, H. Kim, B. Ebiwonjumi, E. Jeong, K. Kim, D. Yun, H. Lee, D. Lee, Development of high-fidelity neutron transport code STREAM, Comput. Phys. Commun. 264 (2021), 107915.
  12. M.B. Chadwick, M. Herman, P. Oblozinsky, M.E. Dunn, Y. Danon, A.C. Kahler, D. L. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, R. Brewer, ENDF/B-VII. 1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112 (12) (2011) 2887-2996.
  13. A.C. Kahler III, R. Macfarlane, NJOY2016, Los Alamos National Lab (LANL), NJOY, Los Alamos, NM (United States), No, 2016. NJOY16; 005075MLTPL00.
  14. B.A. Godfrey, VERA Core Physics Benchmark Progression Problem Specifications, Revision 4, CASL Technical Report, 2014. CASL-U-2012-0131-004.
  15. T. Kaltiaisenaho, Photon transport physics in Serpent 2 Monte Carlo code, Comput. Phys. Commun. 252 (2020), 107143.
  16. A.L. Lund, P.K. Romano, Implementation and Validation of Photon Transport in OpenMC (No. ANL/MCS-TM-381), Argonne National Lab.(ANL), Argonne, IL (United States), 2018.
  17. F. Salvat, PENELOPE-2014: A Code System for Monte Carlo Simulation of Electron and Photon Transport, Nuclear Energy Agency, 2015 (NEA/NSC/DOC 2015 3).
  18. H. Davies, H.A. Bethe, L.C. Maximon, Theory of bremsstrahlung and pair production. II. Integral cross section for pair production, Phys. Rev. 93 (4) (1954) 788.
  19. M. Lemaire, H. Lee, B. Ebiwonjumi, C. Kong, W. Kim, Y. Jo, J. Park, D. Lee, Verification of photon transport capability of UNIST Monte Carlo code MCS, Comput. Phys. Commun. 231 (2018) 1-18.
  20. M.J. Berger, Electron stopping powers for transport calculations, in: T.M. Jenkins, W.R. Nelson, A. Rindi (Eds.), Monte Carlo Transport of Electrons and Photons, Volume 38 of Ettore Majorana International Science Series, Springer US, 1988, pp. 57-80.
  21. T. Kaltiaisenaho, Implementing a Photon Physics Model in Serpent 2 (Master's Thesis), Aalto University, 2016.
  22. D.E. Cullen, EPICS2014: Electron Photon Interaction Cross Sections (Version 2014), International Atomic Energy Agency, 2015 (IAEA-NDS-218, rev.1).
  23. J. Jang, W. Kim, S. Jeong, E. Jeong, J. Park, M. Lemaire, H. Lee, Y. Jo, P. Zhang, D. Lee, Validation of UNIST Monte Carlo code MCS for criticality safety analysis of PWR spent fuel pool and storage cask, Ann. Nucl. Energy 114 (2018) 495-509.
  24. N.T.M. Nhan, P. Zhang, M. Lemaire, B. Ebiwonjumi, W. Kim, H. Lee, D. Lee, Extension of Monte Carlo code MCS to spent fuel cask shielding analysis, Int. J. Energy Res. 44 (10) (2020) 8089-8102.
  25. F. Setiawan, M. Lemaire, D. Lee, Analysis of VVER-1000 mock-up criticality experiments with nuclear data library ENDF/B-VIII. 0 and Monte Carlo code MCS, Nucl. Eng. Technol. 53 (1) (2021) 1-18.
  26. International Atomic Energy Agency, Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis, IAEA, Vienna, 2007.
  27. J.C. Butcher, H. Messel, Electron number distribution in electron-photon showers in air and aluminium absorbers, Nucl. Phys. 20 (1960) 15-128.