• Title/Summary/Keyword: Photon KERMA

Search Result 23, Processing Time 0.032 seconds

A Measurement of Kerma and Absorbed Dose in Photon Fields (Photon Beam에 대한 Kerma와 흡수선량의 측정)

  • Kim, Sung-Hee;Shin, Seung-Aea;Chu, Sung-Sil
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.1
    • /
    • pp.77-82
    • /
    • 1986
  • Determination of the relation between the kerma(Kinetic Energy Released in Material) and the absorbed dose is one of the basic problems of dosimetry. Kerma and absorbed dose were measured for 6 MV X-ray from the high energy medical linear accelerator and $^{60}Co$ gamma-ray. The experimental results show that the absorbed dose in the transient equilibrium region practically coincide with the kerma in water and Al for $^{60}Co$. The maximum dose depths were $1.45g/cm^2$ for 6MV X-ray and $0.48g/cm^2\;for\;^{60}Co$ gamma-ray. The ratios of the absorbed dose at maximum build-up to the collision kerma at the surface, ($K^{att}$), were 0.949 for 6MV X-ray and 0.992 for $^{60}Co$ gamma-ray. No difference was found between water and Al when the standard field size was used. This results show that the dependence of $K^{att}$ on the material is very small.

  • PDF

The Quotient of Absorbed Dose and the Collision Part of Kerma for Photon Beams

  • Jun, Jae-Shik;Loevinger, Robert
    • Journal of Radiation Protection and Research
    • /
    • v.5 no.1
    • /
    • pp.7-10
    • /
    • 1980
  • With the conceptual definition of the quotient(${\beta}$) of absorbed dose and the collision part of kerma for photon beams, the procedure of computing ${\beta}$ is briefly described. A series of calculations of ${\beta}$ was carried out for photons of 0.4, 0.5, 1 and 2 MeV in polystyrene, carbon, air and aluminum. Resultant values are tabulated and evaluated.

  • PDF

The multigroup library processing method for coupled neutron and photon heating calculation of fast reactor

  • Teng Zhang;Xubo Ma;Kui Hu;GuanQun Jia
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1204-1212
    • /
    • 2024
  • To accurately calculate the heating distribution of the fast reactor, a neutron-photon library in MATXS format named Knight-B7.1-1968n × 94γ was processed based on the ENDF/B-VII.1 library for ultrafine groups. The neutron cross-section processing code MGGC2.0 was used to generate few-group neutron cross sections in ISOTXS format. Additionally, the self-developed photon cross-section processing code NGAMMA was utilized to generate photon libraries for neutron-photon coupled heating calculations, including photo-atom cross sections for the ISOTXS format, prompt photon production cross sections, and kinetic energy release in materials (KERMA) factors for neutrons and photons, and the self-shielding effect from the capture and fission cross sections of neutron to photon have been taken into account when the photon source generated by neutron is calculated. The interface code GSORCAL was developed to generate the photon source distribution and interface with the DIF3D code to calculate the neutron-photon coupling heating distribution of the fast reactor core. The neutron-photon coupled heating calculation route was verified using the ZPPR-9 benchmark and the RBEC-M benchmark, and the results of the coupled heating calculations were analyzed in comparison with those obtained from the Monte Carlo code MCNP. The calculations show that the library was accurately processed, and the results of the fast reactor neutron-photon coupled heating calculations agree well with those obtained from MCNP.

Modelling atomic relaxation and bremsstrahlung in the deterministic code STREAM

  • Nhan Nguyen Trong Mai;Kyeongwon Kim;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.673-684
    • /
    • 2024
  • STREAM, developed by the Computational Reactor Physics and Experiment laboratory (CORE) of the Ulsan National Institute of Science and Technology (UNIST), is a deterministic neutron- and photon-transport code primarily designed for light water reactor (LWR) analysis. Initially, the photon module in STREAM did not account for fluorescence and bremsstrahlung photons. This article presents recent developments regarding the integration of atomic relaxation and bremsstrahlung models into the existing photon module, thus allowing for the transport of secondary photons. The photon flux and photon heating computed with the newly incorporated models is compared to results obtained with the Monte Carlo code MCS. The incorporation of secondary photons has substantially improved the accuracy of photon flux calculations, particularly in scenarios involving strong gamma emitters. However, it is essential to note that despite the consideration of secondary photon sources, there is no noticeable improvement in the photon heating for LWR problems when compared to the photon heating obtained with the previous version of STREAM.

Comparison of Air Kerma and Absorbed Dose to Water Based Protocols for High Energy Photon Beams: Theoretical and Experimental Study

  • Shin, Dong-Oh;Kim, Seong-Hoon;Seo, Won-Seop;Park, Sung-Yong;Park, Jin-Ho;Kang, Jin-Oh;Hong, Seong-Eon;Ahn, Hee-Kyung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.241-243
    • /
    • 2002
  • New types of protocols have been recently in development, all based on an absorbed dose-to-water with the aim of improving the accuracy of measurements of absorbed dose to water. IAEA TRS-277, the air-kerma standard-based present protocol, and IAEA TRS-398 and AAPM TG-51, the absorbed dose-to-water standard-based new one, were studied and compared theoretically and experimentally for photon beams of 6, 10, and 15 MV. NE 2571 and 3 Farmer types of ionization chambers in widely commercial use were used to determine an absorbed dose to water at the reference depth in water. Two different kinds of calibration factors were given respectively for every chamber calibrated in $\^$60/CO gamma ray beams from a Korean Secondary Standard Dosimetry Laboratory (KFDA). This work shows that there is around 1 % of difference of absorbed doses measured between two different types of calibration systems owing to different physical parameters and reference conditions used. We hope this work to help form the basis on development of new type of protocol in Korea.

  • PDF

Analysis of several VERA benchmark problems with the photon transport capability of STREAM

  • Mai, Nhan Nguyen Trong;Kim, Kyeongwon;Lemaire, Matthieu;Nguyen, Tung Dong Cao;Lee, Woonghee;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2670-2689
    • /
    • 2022
  • STREAM - a lattice transport calculation code with method of characteristics for the purpose of light water reactor analysis - has been developed by the Computational Reactor Physics and Experiment laboratory (CORE) of the Ulsan National Institute of Science and Technology (UNIST). Recently, efforts have been taken to develop a photon module in STREAM to assess photon heating and the influence of gamma photon transport on power distributions, as only neutron transport was considered in previous STREAM versions. A multi-group photon library is produced for STREAM based on the ENDF/B-VII.1 library with the use of the library-processing code NJOY. The developed photon solver for the computation of 2D and 3D distributions of photon flux and energy deposition is based on the method of characteristics like the neutron solver. The photon library and photon module produced and implemented for STREAM are verified on VERA pin and assembly problems by comparison with the Monte Carlo code MCS - also developed at UNIST. A short analysis of the impact of photon transport during depletion and thermal hydraulics feedback is presented for a 2D core also from the VERA benchmark.

Analytical Consideration of Surface Dose and Kerma for Megavoltage Photon Beams in Clinical Radiation Therapy

  • Birgani, Mohammad Javad Tahmasebi;Behrooz, Mohammad Ali;Razmjoo, Sasan;Zabihzadeh, Mansour;Fatahiasl, Jafar;Maskni, Reza;Abdalvand, Neda;Asgarian, Zeynab;Shamsi, Azin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.153-157
    • /
    • 2016
  • Background: In radiation therapy, estimation of surface doses is clinically important. This study aimed to obtain an analytical relationship to determine the skin surface dose, kerma and the depth of maximum dose, with energies of 6 and 18 megavoltage (MV). Materials and Methods: To obtain the dose on the surface of skin, using the relationship between dose and kerma and solving differential equations governing the two quantities, a general relationship of dose changes relative to the depth was obtained. By dosimetry all the standard square fields of $5cm{\times}5cm$ to $40cm{\times}40cm$, an equation similar to response to differential equations of the dose and kerma were fitted on the measurements for any field size and energy. Applying two conditions: a) equality of the area under dose distribution and kerma changes in versus depth in 6 and 18 MV, b) equality of the kerma and dose at $x=d_{max}$ and using these results, coefficients of the obtained analytical relationship were determined. By putting the depth of zero in the relation, amount of PDD and kerma on the surface of the skin, could be obtained. Results: Using the MATLAB software, an exponential binomial function with R-Square >0.9953 was determined for any field size and depth in two energy modes 6 and 18MV, the surface PDD and kerma was obtained and both of them increase due to the increase of the field, but they reduce due to increased energy and from the obtained relation, depth of maximum dose can be determined. Conclusions: Using this analytical formula, one can find the skin surface dose, kerma and thickness of the buildup region.

Intercomparison of KAERI Reference Photon Radiation Fields

  • S.Y.Chang;J.C.MacDonald;M.K.Murphy;Kim, B.H.;Lee, K.C.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.34-39
    • /
    • 1996
  • A series of measurements was peformed between KAERI and PNNL, U.S.A at KAERI secondary calibration laboratory to intercompare and verify the KAERI reference photon radiation fields by using air equivalent plastic walled ionization chambers, Different ionization chambers of two laboratories were used to determine the air kerma rate, free-in-air, at reference positions in the KAERI photon radiation fields, As the results, the agreement in the cross measurements between two laboratories was found to be within less than ${\pm}$ 3 %. This degree of consistency was considered to be encouraging, because each laboratory maintains independently its calibration traceablity with its national primary standard

  • PDF

Establishment of the Monoenergetic Fluorescent X-ray Radiation Fields (교정용 단일에너지 형광 X-선장의 제작)

  • Kim, Jang-Lyul;Kim, Bong-Hwan;Chang, Si-Young;Lee, Jae-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.1
    • /
    • pp.33-47
    • /
    • 1998
  • Using a combination of an X-ray generator Installed in radiation calibration laboratory of Korea Atomic Energy Research Institute (KAERI) and a series of 8 radiators and filters described in ISO-4037, monoenergetic fluorescent X-rays from 8.6 keV to 75 keV were produced. This fluorescent X-rays generated by primary X-rays from radiator were discriminated $K_{\beta}$ lines with the aid of filter material and the only $K_{\alpha}$ X-rays were analyzed with the high purity Ge detector and portable MCA. The air kerma rates were measured with the 35 co ionization chamber and compared with the calculational results, and the beam uniformity and the scattered effects of radiation fields were also measured. The beam purities were more than 90 % for the energy range of 8.6 keV to 75 keV and the air kerma rates were from 1.91 mGy/h (radiator : Au, filter : W) to 54.2 mGy (radiator : Mo, filter : Zr) at 43 cm from center of the radiator. The effective area of beam at the measurement point of air kerma rates was 12 cm ${\times}$ 12 cm and the influence of scattered radiation was less than 3 %. The fluorescent X-rays established in this study could be used for the determination of energy response of the radiation measurement devices and the personal dosemeters in low photon energy regions.

  • PDF

Intercomparison of the KAERI Reference Photon and Beta Radiation Measurements (한국원자력연구소 기준 광자 및 베타선장 측정의 국제상호비교)

  • Chang, Si-Yeong;Kim, Bong-Hwan;Kim, Jang-Lyul;McDonald, J.C.;Murphy, M.K.
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.255-262
    • /
    • 1996
  • This paper describes the results of intercomparison measurements of KAERI reference photon and beta radiation fields between the KAERI and the PNNL(Pacific Northwest National Laboratory), recently performed at KAERI radiation calibration and dosimetry laboratory on the basis of the ANSI N13.11 criteria for personal dosimeter performance test. Each laboratory used her own radiation detectors or measurement devices traceable to her national primary standard in measuring the exposure rates for photon fields, the absorbed dose rates for beta radiation fields. The agreements in reference radiation measurements between two laboratories were found to be less than ${\pm}2.0%$ for photon fields, ${\pm}1.0%$ for beta radiation fields. Therefore, it could be concluded that KAERI reference radiation fields comply well with the international standard and thus can further serve as a national basis for the researches and developments in radiation protection dosimetry in Korea.

  • PDF