DOI QR코드

DOI QR Code

Neutron irradiation impact on structural and electrical properties of polycrystalline Al2O3

  • Sunil Kumar (Institute for Plasma Research) ;
  • Sejal Shah (Institute for Plasma Research) ;
  • S. Vala (Institute for Plasma Research) ;
  • M. Abhangi (Institute for Plasma Research) ;
  • A. Chakraborty (Institute for Plasma Research)
  • Received : 2023.04.01
  • Accepted : 2023.10.09
  • Published : 2024.02.25

Abstract

High energy neutron irradiations impact on structural and electrical properties of alumina are studied with particular emphasis on real time in-situ radiation induced conductivity measurement in low flux region. Polycrystalline Al2O3 samples are subjected to high energy neutrons produced from D-T neutron generator and Am-Be neutron source. 14 MeV neutrons from D-T generator are chosen to study the role of fast neutron irradiation in the structural modification of samples. Real time in-situ electrical measurement is performed to investigate the change in insulation resistance of Al2O3 due to radiation induced conductivity at low flux regime. During neutron irradiation, a significant transient decrease in insulation resistance is observed which recovers relative higher value just after neutron exposure is switched off. XRD results of 14 MeV neutron irradiated samples suggest annealing effect. Impact of relatively low energy neutrons on the structural properties is also studied using Am-Be neutrons. In this case, clustering is observed on the sample surface after prolonged neutron exposure. The structural characterizations of pristine and irradiated Al2O3 samples are performed using XRD, SEM, and EDX. The results from these characterizations are analysed and interpreted in the manuscript.

Keywords

Acknowledgement

Technical support provided by R. Kumar, IPR during neutron irradiation is acknowledged. We are thankful to Purvi Kakani and N. Jamanapara, FCIPT, IPR for providing SEM and XRD characterization facility respectively.

References

  1. W. Dienst, T. Fett, R. Heidinger, H. Rohrig, B. Schulz, Investigations on ceramic materials for fusion technology, J. Nucl. Mater. 174 (1) (1990) 102-109.
  2. E.Z. Jin, L.S. Niu, Crystalline-to-amorphous transition in silicon carbide under neutron irradiation, Vacuum 86 (7) (2012) 917-923.
  3. B.S. Hickman, D.G. Walker, The effect of neutron irradiation on aluminium oxide, J. Nucl. Mater. 18 (2) (1966) 197-205.
  4. F. Clinard, G. Hurley, L. Hobbs, D. Rohr, R. Youngman, Structural performance of ceramics in a high-fluence fusion environment, J. Nucl. Mater. 123 (1-3) (1984) 1386-1392.
  5. B. Buyuk, Y. Goncu, A.B. Tugrul, N. Ay, Swelling on neutron induced hexagonal boron nitride and hexagonal boron nitride-titanium diboride composites, Vacuum 177 (2020), 109350.
  6. W. Kesternich, Radiation-induced electrical degradation: an effect of surface conductance and microcracking, J. Nucl. Mater. 253 (1) (1998) 167-174.
  7. T. Yano, K. Ichikawa, M. Akiyoshi, Y. Tachi, Neutron irradiation damage in aluminum oxide and nitride ceramics up to a fluence of 4.2×1026n/m2/sup> J. Nucl. Mater. 283 (2000) 947-951.
  8. M. Rechtin, A transmission electron microscopy study of the defect microstructure of Al2O3 subjected to ion bombardment, Radiat. Eff. 42 (3-4) (1979) 129-144.
  9. V. Skuratov, S. Zinkle, A. Efimov, K. Havancsak, Swift heavy ion-induced modification of Al2O3 and MgO surfaces, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 203 (2003) 136-140.
  10. N. Okubo, N. Ishikawa, M. Sataka, S. Jitsukawa, Surface amorphization in Al2O3 induced by swift heavy ion irradiation, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 314 (2013) 208-210.
  11. C. Grygiel, F. Moisy, M. Sall, H. Lebius, E. Balanzat, T. Madi, T. Been, D. Marie, I. Monnet, In-situ kinetics of modifications induced by swift heavy ions in Al2O3 colour centre formation, structural modification and amorphization, Acta Mater. (2017) 157-167.
  12. Y. Yuan, M. Jiang, F. Zhao, H. Chen, H. Gao, H. Xiao, X. Xiang, X. Zu, Ab initio molecular dynamics simulation of low energy radiation responses of α-Al2O3, Sci. Rep. 7 (2017) 3621.
  13. H. Zirour, M. Izerrouken, A. Sari, Radiation damage induced in Al 2 O 3 single crystal sequentially irradiated with reactor neutrons and 90MeV Xe ions, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 377 (2016) 105-111.
  14. A. Popov, A. Lushchik, E. Shablonin, E. Vasil'chenko, E. Kotomin, A. Moskina, V. Kuzovkov, Comparison of the F-type center thermal annealing in heavy-ion and neutron irradiated Al2O3 single crystals, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 433 (2018) 93-97.
  15. V. Kuzovkov, E. Kotomin, A. Popov, Kinetics of the electronic center annealing in Al2O3 crystals, J. Nucl. Mater. 502 (2018) 295-300.
  16. T. Yano, H. Konishi, S. Yamazaki, M.I.b. Idris, K. Yoshida, Recovery of neutron-irradiation-induced defects of Al2O3, Y2O3, and yttrium-aluminum garnet, J. Nucl. Sci. Technol. 54 (8) (2017) 891-898.
  17. R.W. Harrison, On the use of ion beams to emulate the neutron irradiation behaviour of tungsten, Vacuum 160 (2019) 355-370.
  18. S. Kumar, S. Shah, I. Sulania, F. Singh, A. Chakraborty, Structural investigation of low energy ion irradiated Al2O3, Ceram. Int. 45 (16) (2019) 20346-20353.
  19. L.L. Snead, J. Zinkle, D.P. White, Thermal conductivity degradation of ceramic materials due to low temperature, low dose neutron irradiation, J. Nucl. Mater. 340 (2-3) (2005) 187-202.
  20. K. Noda, T. Nakazawa, Y. Oyama, H. Maekawa, J. Kaneda, C. Kinoshita, First in situ measurement of electrical resistivity of ceramic insulator during irradiation with neutrons of energy 14 MeV, Fusion Eng. Des. 29 (1995) 448-454.
  21. Andris Antuzevics, Edgars Elsts, Meldra Kemere, Aleksandr Lushchik, Aleksandra Moskina, Theo A. Scherer, Anatoli I. Popov, Thermal annealing of neutron irradiation generated paramagnetic defects in transparent Al2O3 ceramics, Opt. Mater. 135 (2023), 113250.
  22. D. Stork, S.J. Zinkle, Introduction to the special issue on the technical status of materials for a fusion reactor, Nucl. Fusion 57 (9) (2017), 092001.
  23. A. Chakraborty, C. Rotti C, M. Bandyopadhyay, M.J. Singh MJ, R.G. Nair, S. Shah, U.K. Baruah, R.S. Hemsworth, B. Schunke, Diagnostic neutral beam for ITER-concept to engineering, IEEE Trans. Plasma Sci. 38 (3) (2009) 248-253.
  24. S. Vala, M. Abhangi, R. Kumar, S. Tiwari, R. Kumar, H. Swami, M. Bandyopadhyay, Development and performance of a 14-MeV neutron generator, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 959 (2020), 163495.
  25. J. Marsh, D. Thomas, M. Burke, High resolution measurements of neutron energy spectra from AmBe and AmB neutron sources, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 366 (2-3) (1995) 340-348.
  26. G.P. Pells, Radiation damage effects in alumina, J. Am. Ceram. Soc. 77 (2) (1994) 368-377.
  27. C. Kinoshita, K. Fukumoto, K. Nakai, Electron- ion-and neutron-irradiation damage in ceramics, Ann. Chimie Sci. Mat'eriaux 16 (4-6) (1991) 379-389.
  28. L.R. Greenwood, The SPECTER Computer Code for Radiation Damage Calculations, 2013.
  29. P. Rinard, Neutron Interactions with Matter, Passive Nondestructive Assay of Nuclear Materials, 1991, pp. 375-377.
  30. W. Wesch, E. Wendler, Ion beam modification of solids, Springer Ser. Surf. Sci. 61 (2016) 137-182.
  31. C. Azevedo, A review on neutron-irradiation-induced hardening of metallic components, Eng. Fail. Anal. 18 (8) (2011) 1921-1942.
  32. J.-H. Kwon, G.-G. Lee, C.-S. Shin, Multiscale modeling of radiation effects on materials: pressure vessel embrittlement, Nucl. Eng. Technol. 41 (1) (2009) 11-20.
  33. Y. Zhang, C. Silva, T.G. Lach, M.A. Tunes, Y. Zhou, L. Nuckols, W.L. Boldman, P. D. Rack, S.E. Donnelly, L. Jiang, L. Wang, Role of electronic energy loss on defect production and interface stability: comparison between ceramic materials and high-entropy alloys, Curr. Opin. Solid State Mater. Sci. 26 (4) (2022), 101001.
  34. D. Miller, M. Biesinger, N. McIntyre, Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: one possible mechanism for surface contamination? Surf. Interface Anal.: An Int. J. Devoted dev. Appl. Tech. Anal. Surfaces, interfaces thin films 33 (4) (2002) 299-305.
  35. Stoja Reskovic, Tin Brlic, Suzana Jakovljevic, Ivan Jandrlic, Surface contamination of alumina ceramics by carbon, Eng. Rev. 37 (3) (2017) 335-340.
  36. G.P. Pells, Radiation effects and damage mechanisms in ceramic insulators and window materials, J. Nucl. Mater. 155 (1988) 67-76.
  37. R. Patel, N. Gupta, Volume resistivity of epoxy containing nano-sized Al2O3 fillers, in: Proceedings of the Fifteenth National Power Systems Conference (NPSC), December, Bombay, India, 2008.
  38. R.H. Insley, Electrical Properties of Alumina Ceramics, Alumina Chemicals: Science and Technology Handbook, The American Ceramic Society Westerville, OH, 1990.
  39. https://testguy.net/content/186-Insulation-Resistance-Test-Methods.
  40. R. Hanna, T. Paulmier, P. Molini'e, M. Belhaj, B. Dirassen, D. Payan, N. Balcon, Radiation induced conductivity in space dielectric materials, J. Appl. Phys. 115 (3) (2014), 033713.
  41. C. Patuwathavithane, W. Wu, R. Zee, Radiation induced conductivity in alumina, J. Nucl. Mater. 225 (1995) 328-335.
  42. H. Wintle, Radiation-induced conductivity in insulators, Br. J. Radiol. 33 (395) (1960) 706-707.
  43. Wei Y. Wu, C. Patuwathavithane, Ralph H. Zee, Radiation induced conductivity in ceramics insulators for thermionic systems, in: AIP Conference Proceedings, American Institute of Physics, 301 1, 1994, pp. 1147-1152.
  44. P. Patra, Sejal Shah, S.K. Kedia, I. Sulania Singh, Study on structural properties of swift heavy ion induced damage in Al2O3, Radiat. Phys. Chem. 212 (2023) 111128.