DOI QR코드

DOI QR Code

Numerical simulation and experimental study of quasi-periodic large-scale vortex structures in rod bundle lattices

  • Yi Liao (College of Nuclear Science and Technology, Naval University of Engineering) ;
  • Songyang Ma (College of Nuclear Science and Technology, Naval University of Engineering) ;
  • Hongguang Xiao (College of Nuclear Science and Technology, Naval University of Engineering) ;
  • Wenzhen Chen (College of Nuclear Science and Technology, Naval University of Engineering) ;
  • Kehan Ouyang (The Security Assessment and Support Office of Naval Staff Department) ;
  • Zehua Guo (School of Nuclear Science and Technology, Harbin Engineering University) ;
  • Lele Song (School of Nuclear Science and Technology, Harbin Engineering University)
  • Received : 2023.02.20
  • Accepted : 2023.10.12
  • Published : 2024.02.25

Abstract

Study of flow behavior within rod bundles has been an active topic. Surface modification technologies are important parts of the design of the fourth generation reactor, which can increase the strength of the secondary flow within the rod bundle lattices. Quasi-periodic large-scale vortex structure (QLVS) is introduced by arranging micro ribs on the surface of rod bundles, which enhanced the scale of the secondary flow between the rod bundle lattices. Using computational fluid dynamics (CFD) and water experiments, the flow field distribution and drag coefficient of the rod-bundle lattices are studied. The secondary flow between the micro-ribbed rod-bundle lattice is significantly enhanced compared to the standard rod-bundle lattice. The numerical simulation results agree well with the experimental results.

Keywords

Acknowledgement

This research is supported by the National Natural Science Foundation of China (No. 12102474) and Major Project (No. 2023-JCJQ-ZD-131-00).

References

  1. B.H. Yan, The thermal hydraulic phenomenon in tight lattice bundles: a review, Ann. Nucl. Energy 126 (2019) 330-349. https://doi.org/10.1016/j.anucene.2018.11.037
  2. M.S. Guellouz, S. Tavoularis, Heat transfer in rod bundle subchannels with varying rod-wall proximity, Nucl. Eng. Des. 132 (3) (1992) 351-366. https://doi.org/10.1016/0029-5493(92)90230-S
  3. T. Krauss, L. Meyer, Experimental investigation of turbulent transport of momentum and energy in a heated rod bundle, Nucl. Eng. Des. 180 (3) (1998) 185-206. https://doi.org/10.1016/S0029-5493(98)00158-7
  4. H. Ninokata, E. Merzari, A. Khakim, Analysis of low Reynolds number turbulent flow phenomena in nuclear fuel pin subassemblies of tight lattice configuration, Nucl. Eng. Des. 239 (5) (2009) 855-866. https://doi.org/10.1016/j.nucengdes.2008.10.030
  5. R. Gajapathy, K. Velusamy, P. Selvaraj, CFD investigation of helical wire-wrapped 7-pin fuel bundle and the challenges in modeling full scale 217 pin bundle, Nucl. Eng. Des. 237 (2007) 2332-2342. https://doi.org/10.1016/j.nucengdes.2007.05.003
  6. S.V. Moller, Single-phase turbulent mixing in rod bundles, Exp. Therm. Fluid Sci. 5 (1) (1992) 26-33. https://doi.org/10.1016/0894-1777(92)90053-8
  7. M.S. Guellouz, S. Tavoularis, The structure of turbulent flow in a rectangular channel containing a cylindrical rod. Part 1: Reynolds-averaged measurements; Part 2: phase-averaged measure-ments, Exp. Therm. Fluid Sci. 23 (2000) 59-91. https://doi.org/10.1016/S0894-1777(00)00038-8
  8. D.S. Rowe, Measurement of Turbulent Velocity, Intensity and Scale in Rod Bundle Flow Channels, M. Oregon State University, Richland, 1973.
  9. J.D. Hooper, K. Rehme, The Structure of Single-phase Turbulent Flows through Closely Spaced Rod Arrays, 1983.
  10. J.D. Hooper, K. Rehme, Large-scale structural effects in developed turbulent flow through closely-spaced rod arrays, J. Fluid Mech. 145 (1984) 305-337. https://doi.org/10.1017/S0022112084002949
  11. F. Baratto, S. Bailey, S. Tavoularis, Measurements of frequencies and spatial correlations of coherent structures in rod bundle flows, Nucl. Eng. Des. 236 (17) (2006) 830-1837. https://doi.org/10.1016/j.nucengdes.2005.12.009
  12. H.Y. Jeong, K.S. Ha, Y.M. Kwon, et al., A dominant geometrical parameter affecting the turbulent mixing rate in rod bundles, Int. J. Heat Mass Tran. 50 (5/6) (2007) 908-918. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.023
  13. B.H. Yan, Periodic large scale vortex structure in rectangular channels with non-uniform wall roughness, J. Nuclear Eng. Design 241 (8) (2011) 2948-2955. https://doi.org/10.1016/j.nucengdes.2011.06.027
  14. P. Saha, G. Biswas, A.C. Mandal, et al., Investigation of coherent structures in a turbulent channel with built-in longitudinal vortex generators, Int. J. Heat Mass Tran. 104 (jan) (2017) 178-198. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.105
  15. O.C.A. Nalin, et al., Development of a measurement technique for detailed flow characterization in fuel bundles, Nucl. Eng. Des. 340 (2018) 146-155. https://doi.org/10.1016/j.nucengdes.2018.09.031
  16. L. Meyer, From discovery to recognition of periodic large scale vortices in rod bundles assource of natural mixing between subchannels - a review, Nucl. Eng. Des. 240 (2010) 1575-1588. https://doi.org/10.1016/j.nucengdes.2010.03.014
  17. H.G. Xiao, Y.W. Zhang, W.Z. Chen, et al., The research on coherent structure in 7-rod bundle lattice, Ann. Nucl. Energy 124 (FEB) (2019) 39-48. https://doi.org/10.1016/j.anucene.2018.09.027
  18. Y.L. Chi, H.S. Chang, K.I. Wang, Effect of gap width on turbulent mixing of parallel flow in a square channel with a cylindrical rod, Exp. Therm. Fluid Sci. 47 (2013) 98-107. https://doi.org/10.1016/j.expthermflusci.2013.01.005
  19. C. Tae-Hyun, et al., A pressure drop model for spacer grids with and without flow mixing Vanes, J. Nucl. Sci. Technol. (1998).
  20. S.Y. Ma, et al., Research on coherent structure in 4-rod bundle lattice based on CFD, Ann. Nucl. Energy (2022).
  21. K. Hu, Z.B. Li, Detailed Examples of ANSYS ICEM CFD Engineering, Posts & Telecom Press, Peking, 2014 (in Chinese).
  22. B.H. Yan, L. Yu, URANS simulation of the turbulent flow in a tight lattice: effect of the pitch to diameter ratio, Prog. Nucl. Energy 53 (4) (2011) 428-437. https://doi.org/10.1016/j.pnucene.2011.02.009
  23. N.E. Todreas, M.S. Kazimi, Kazimi. Nuclear System I: Thermal Hydraulic Fundamentals, McGraw-Hill Companies, Inc, M. New York, USA, 1990, pp. 343-459.
  24. A. Haider, O. Levenspiel, Drag coefficient and terminal velocity of spherical and nonspherical particles, Powder Technol. 58 (1) (1989) 63-70. https://doi.org/10.1016/0032-5910(89)80008-7
  25. M. Khan, P. Sooraj, A. Sharma, et al., Flow around a cube for Reynolds numbers between 500 and 55,000, Exp. Therm. Fluid Sci. 93 (2018) 257-271. https://doi.org/10.1016/j.expthermflusci.2017.12.013
  26. J. Hunt, A. Wray, P. Moin, Eddies, Stream, and Convergence Zones in Turbulent Flows. Report CTR-S88, R. Centre for Turbulence Research, 1988.