DOI QR코드

DOI QR Code

GABOR LIKE STRUCTURED FRAMES IN SEPARABLE HILBERT SPACES

  • Jineesh Thomas (St. Thomas College Palai) ;
  • N.M.M. Namboothiri (Department of Mathematics, Government College Shanthanpara) ;
  • T.C.E. Nambudiri (Department of Mathematics, Government Brennen College Kannur)
  • Received : 2023.12.12
  • Accepted : 2024.04.03
  • Published : 2024.05.31

Abstract

We obtain a structured class of frames in separable Hilbert spaces which are generalizations of Gabor frames in L2(ℝ) in their construction aspects. For this, the concept of Gabor type unitary systems in [13] is generalized by considering a system of invertible operators in place of unitary systems. Pseudo Gabor like frames and pseudo Gabor frames are introduced and the corresponding frame operators are characterized.

Keywords

References

  1. J. Cahill, P.G. Cazassa & G. Kutyniok: Operators and Frames. J. Oper. Theory. 70 (2013), no. 1, 145-164. doi:10.7900/jot.2011may10.1973 
  2. P.G. Cazassa: Modern tools for Weyl-Heisenberg (Gabor) frame theory. Adv. Imaging Electronic Phys. 115 (2000), 1-127. doi:10.1016/S1076-5670(01)80094-X 
  3. O. Christensen: Functions, Spaces, and Expansions. Second Edition, Birkhauser, Boston, 2010. 
  4. O. Christensen: An Introduction to Frames and Riesz Bases. Second Edition, Birkhauser, Boston, 2016. 
  5. I. Daubechies, A. Grossmann & Y. Meyer: Painless nonorthogonal expansions. J. Math. Phys. 27 (1986), 1271-1283. doi:10.1063/1.527388 
  6. R.J. Duffin & A.C. Schaeffler: A class of non-harmonic Fourier series. Trans. Amer. Math. Soc. 72 (1952), 341-366 doi:10.1090/S0002-9947-1952-0047179-6 
  7. T.C. Easwaran Nambudiri & K. Parthasarathy: Generalised Weyl-Heisenberg frame operators. Bull. Sci. Math. 136 (2012), 44-53 doi:10.1016/j.bulsci.2011.09.001 
  8. T.C. Easwaran Nambudiri & K. Parthasarathy: Characterization of Weyl-Heisenberg frame operators. Bull. Sci. Math. 137 (2013), 322-324 doi:org/10.1016/j.bulsci.2012.09.001 
  9. T.C. Easwaran Nambudiri & K. Parthasarathy: Wavelet frame operators and admissible frames. Asian-Eur. J. Math. 14 (2021), no. 9, 2150160. doi:org/10.1142/S1793557121501606 
  10. D. Gabor: Theory of communication. Journal of Institution of Electrical Engineers 93 (1946), 429-457. 
  11. R. Gellar & L. Page: A new look at some familiar spaces of intertwining operators. Pacific J. Math. 47 (1973), no. 2, 435-441. 
  12. K. Grochenig: Foundations of Time Frequency Analysis. Birkhauser, Boston, 2001. 
  13. D. Han & D.R. Larson: Frames, Bases and Group representations. Mem. Am. Math. Soc. 147 (2000), 697-714. 
  14. C. Heil: A Basis Theory Primer. Birkhauser, Boston, 2011. 
  15. M. Janssen: Gabor representation of generalized functions. J. Math. Anal. Appl. 83 (1981), 377-394. doi:10.1016/0022-247X(81)90130-X 
  16. C.S. Kubrusly: The Elements of Operator Theory, Second Edition, Birkhauser, Boston, 2011. 
  17. K.D. Lamb, Gerry, C. Christopher & Grobe Rainer: "Unitary and nonunitary approaches in quantum field theory" (2007), Faculty publications Physics. 40. https://ir.library.illinoisstate.edu/fpphys/40 
  18. G.E. Pfander: Sampling of Operators. J. Fourier Anal. Appl. 19 (2013), 612-650.