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GABOR LIKE STRUCTURED FRAMES IN SEPARABLE
HILBERT SPACES

JINEESH THOMAS ®*, N.M.M. NAMBOOTHIRI” AND T.C.E. NAMBUDIRI®

ABSTRACT. We obtain a structured class of frames in separable Hilbert spaces which
are generalizations of Gabor frames in L? (R) in their construction aspects. For this,
the concept of Gabor type unitary systems in [13] is generalized by considering a
system of invertible operators in place of unitary systems. Pseudo Gabor like frames
and pseudo Gabor frames are introduced and the corresponding frame operators are
characterized.

1. INTRODUCTION

Frames in separable Hilbert spaces are more flexible tools than orthonormal bases
for transforming elements of the space into square summable complex sequences,
ensuring the faithful reconstruction. They appear as generalizations of orthonormal
bases, but the series expansions using frames are not unique as in the case of an
orthonormal basis. The work [10] of Gabor initiated and formulated a fundamental
approach to the decomposition of signals (elements of L?(R)) in terms of elementary
signals. Duffin and Schaeffer absorbed the fundamental notion of Gabor and defined
formally the concept of a frame in a Hilbert space [6]. The significant work of Janssen
[15] made it an independent topic of mathematical investigation in 1980s. After the
innovative work [5] of Daubechies, Grossmann and Meyer in 1986, the theory of
frames began to be studied extensively.

Among the different classes of frames, Gabor frames (also called Weyl-Heisenberg
frames) in L?(R) play the key role in the theory. Gabor frames are very special in
their nature as they are constructed from a single element of the space using a system

of unitary operators on L2(R). They transform each element f of the space L?(R)
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into a corresponding square summable complex sequence which is indexed by the
time-frequency lattice points.

Frame operators are important objects in frame theory [7], [18] since the recon-
struction of an element in the Hilbert space using a frame requires the canonical
dual frame, which is the image of the frame under the inverse of the frame operator.
These operators were completely characterized in the contexts of abstract frames
and Gabor frames in [7] and [8] respectively. For a frame in an abstract Hilbert
space H, a specific structure similar to that of a Gabor frame in L?(R) can not
be expected in the general setting. Structured frames in separable Hilbert spaces
generated by Gabor type unitary systems were discussed in [13] (Chapter 4).

In this article, we attempt for this in a more general way, using invertible opera-
tors from L?(R) into the Hilbert space concerned. Towards this, when Gabor type
unitary systems are replaced by a system of invertible operators from L?(R) into
the Hilbert space, we encounter a lot of non trivialities. This is the background of
our discussion, but our approach is entirely different from that of [13]. Operators
which generate frames with a prescribed frame operator [1] is an interesting theme.
Towards this, we provide characterizations for the frame operators of the newly
introduced structured frames here.

In Section 2, some basic definitions and results which are inevitable for the present
work are provided. Pseudo B-Gabor frames in separable Hilbert spaces, their frame
operators and the characterization of these operators are discussed in the next two

Sections.

2. PRELIMINARIES

A countable sequence {f;}7°, of elements in a separable Hilbert space # is a

frame for H if there exist constants «, S > 0 such that,
o0
alF I < Y1) P < BIAIR, YV feH.
k=1

If {fi}72, satisfies the upper frame inequality, then it is called a Bessel sequence.
The numbers « and S are called lower and upper frame bounds respectively. If a
frame has equal frame bounds, then it is called a tight frame. In particular, a tight

frame with a = 8 =1 is called a Parseval frame or normalized tight frame.
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For a Bessel sequence {fx}?°, C H, the operator T : [*(N) — H defined by
T{ck}?2 1 = Y pey ¢k fr is a bounded linear operator known as the synthesis operator
or pre-frame operator. The adjoint operator T* : H — [?(N) of T given by T*f =
{(f, fe)}32, is called the analysis operator. The operator S : H — H defined by
Sf=TT*f =322 {f. fu)fu, f € H is called the frame operator of { f}32 .

The frame operator of a tight frame is a scalar multiple of the identity operator
and that of a normalized tight frame is the identity operator. The frame operator
S of a frame {f;}72, is a bounded, invertible, self-adjoint, positive operator on
H. The frame {S™!f;}?2, is called the canonical dual frame of {fx}32, in H . A
frame {f;}?°, and its canonical dual frame {S™!fx}?2, together give two different

reconstruction formulas:

F=Y (LS ) fk and f = fok S~ fy, for all f € H.
k=1

k=1

Gabor frames in L?(IR) are generated by two classes of operators on L?(R), namely
the translation and modulation operators. For a,b € R and f € L?(R), the trans-
lation operator T, on L?(R) is defined by (T,f)(z) = f(z —a), * € R and the
modulation operator E, on L2(R) by (Eyf)(x) = e*™*f(z), x € R. A frame in
L*(R) of the form {EpnpThag}mnez for some g € L*(R) and a,b > 0 is called a Ga-
bor frame or Weyl-Heisenberg frame. Gabor analysis aims at representing functions
f € L?(R) as superposition of translated and modulated versions of a fixed window

function g € L*(R). If f € L*(R) is expanded as f = Z cmn EmpTneg using
m,nel
a Gabor frame {EyTnag}mnez where cmp = (f, EmpTnah),h = S™1g, then the

square summable sequence {Cm,n}(m,n)EZX 7 is the representation of the signal f in
the time-frequency plane: aZ x bZ.
For more details on this basic discussion, we suggest to refer the survey article of

Casazza [2] and the monographs of Christensen [4], Grochenig [12] and Heil [14].

3. PSEUDO GABOR LIKE FRAMES IN SEPARABLE HILBERT SPACES

In our discussions, H and K will denote separable Hilbert spaces. We begin with
a simple observation, analogous to Corollary 5.3.2 in [4], on the interplay of bounded

linear operators between separable Hilbert spaces.
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Lemma 3.1. Let H and K be separable Hilbert spaces. Then every surjective
bounded linear operator A : H — K maps frames in H to frames in K. In par-
ticular, every invertible bounded linear operator between two separable Hilbert spaces

maps frames in one to frames in the other.

Proof. Let {uy}ren be a frame in H with frame bounds 0 < a < 8 < oo. Then
for all z € H, afz|? < Yey | (@ ue) < Bllz||?. Obviously, for all y € K,
kZN | (y, Aug) [*= kZN | (A, ur) P< B A%y < BIA*IPllyl? = BIANZ |yl
€ €
Since A : H — K is surjective, by Lemma 2.5.1 in [4], it has a right inverse
B : K — H such that B # 0 and AB = Ix. But then Ixx = (AB)* = B*A*.
For y € IC, there is « € ‘H for which y = Ax = IxAx = B*A*Ax.
Hence ||y = ||J-L3*f4*z‘1196||2 < || B*||?|| A* Az|*
<IBHP(=) X | (A* Az, w) |2
?4 keN
= [|1B*I*(=) X | {y, Aug) |*, where || B*|| > 0.
@ keN
Thus of B2yl < ¥ | (> Au) P< B2y, as desired. O
keN

In the situation above, the image frame {Auy : k € N} has the frame operator S’
defined for all z € K by
S'y = Z(w,Auk>Auk = A(Z(A*:U,uk>uk) = ASA*(z),
keN keN
where S is the frame operator of the frame {uy : k € N} in H.
Lemma 3.1 motivates to look at the aspects of the images of Gabor frames under

invertible bounded linear operators B : L?(R) — H. Since

B({Emana g}m,nEZ) = {BEmana g}m,nEZ
= {BEmbB_lBTnaB_l(Bg)}m,nEZ
= {(BE,B~")™(BT,B~")"(Bg)}mnez,

they are generated by the action of a group of operators {Engri}m,neZ on a single
generator Bg, where Efzb = BE,,B~! and BT,,B~' = TB, m,n € Z. Thus,

na’
such image frames are structured frames in H. For proceeding further, the following

definitions will be useful.

Definition 3.2. For an invertible bounded linear operator B : L?(R) — H and
a € R, we define B-translation TP on H by TP = BT,B~! and B-modulation EB
on H by Ef = BE,B~! where T, and E, are respectively the translation and
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modulation operators on L%(R). For a > 0 and b > 0, the family {EZ, T2 20}, nez
generated by xg € H is called a Pseudo B-Gabor like system in H. Such a system
is called a Pseudo B-Gabor like frame (Pseudo B-Gabor like Bessel sequence) if it
forms a frame (Bessel sequence) in . A frame {g.,, »} in H is called a Pseudo Gabor

like frame if {gm, »} is a Pseudo B-Gabor like frame for some invertible operator

B:L%(R) - H.

Gabor type unitary systems discussed in [13] were defined by generalizing the
remarkable property T,E, = e 2™®E,T, of the pair (T,, Ey) of translation and
modulation operators. Interestingly, for the generalization of the system of operators
generated by the combination T, FE}, we need not stick on to the unitary system.
Instead, a system of invertible operators can be considered, as Proposition 3.3 below

suggests.

Proposition 3.3. Let B : L?(R) — H be invertible. Then the following statements
hold.
(i) EB, 1B = e?rimbnapB BB - for all m,n € Z.

(ii) {EB,TB x0}mnez is a Pseudo B-Gabor like frame in H if and only if the
family {TB EB,x0}, nez is also a frame in H.
Proof. For all f € L?(R), the commutator relation [3]
TEyf(x) = Tu(e2™% f(x)) = 27000 f(z — q) = e~ 2miabemie T f()

= e~ 2meb By T, f () holds for all x € R.

Hence for all f € L?(R), T,Eyf = e 2" BT, f

& BT,E,f = Be ™ BT, f = e 2MBET, f

& TPEPBf = e ?™EBTBBY

& TfEbe = 6_2”“1’E{?fo for all z € H, since B : L?(R) — H is invertible.

Hence EZ, TE = eQﬂmbnanlEbe for all m,n € Z, proving (i).

—2mimbna

Since {EﬁbTrﬁﬂUo}m,neZ is a frame in H and e is of absolute value 1, the

B

required frame inequality for the family {7 Egbxo}m,nez follows directly from that

na

of {E’TJbeTﬁajO}mmeZ. The reverse implication follows similarly. ]

Upcoming proposition gives a relation between Pseudo B-Gabor like frame in H
and Gabor frame in L?(R).

Proposition 3.4. The family {EB,TE 20}, nez forms a Pseudo B-Gabor like
frame in H if and only if {EmpTna B 20 }tmnez forms a Gabor frame in L*(R).
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Proof. Since {EB, TB xo:m,n € Z} = {BE,,B"*BT,,uB"'x¢ : m,n € Z}
= B{{ETpaB 2o : m,n € Z}),

the proof follows for both the cases of implications from Lemma 3.1. O

It is well known that if ab > 1 for a given pair of frame parameters a,b > 0,
then no g € L?(R) can generate a frame of the form {E,,,Thag}m.nez (see Theorem

11.3.1 in [4]). We make an analogous observation here.

Proposition 3.5. Let H be a separable Hilbert space and B : L*(R) — H be a
bounded invertible linear map. For xo € H and a,b > 0, {Engrixo}m,neZ does not
form a Pseudo B-Gabor like frame for H whenever ab > 1.

Proof. Let ab > 1. If {EngyixO}m,nEZ is a Pseudo B-Gabor like frame in H, then
Proposition 3.4 yields that {EmanaB_ll“o}m,neZ is a Gabor frame in L?(R). But

then necessarily ab < 1, leading to a contradiction. O

It is also known that, for given ¢ € L?(R) and a,b > 0, {EmbThag}tmmnez is a
Bessel sequence in L2(R) if and only if {Er/aTn /b9 mmez is a Bessel sequence in
L*(R) (see Lemma 12.2.2 in [4]). An analogous observation follows from Proposition
3.4.

Lemma 3.6. Let H be a separable Hilbert space, B : L*(R) — H be a bounded
invertible linear map and xo € H. For a,b > 0, the family {Engf;ﬂ?o}m,neZ forms
a Pseudo B-Gabor like Bessel sequence in H if and only if {Eﬁ/an/bxg}m,neZ is a
Pseudo B-Gabor like Bessel sequence in H.

Proof. {Eﬁngzg}mmeZ is a Pseudo B-Gabor like Bessel sequence in H
& {EmanaB_lxo}m’nGZ is a Bessel sequence in L2(R), by Proposition 3.4
& {Em/aTn/bBil':UO}m,nEZ is a Bessel sequence in L?(R)
< {EB TBbxo}m,nez is a Pseudo B-Gabor like Bessel sequence in H d

m/a n/

If the family {EngriJUo}m,neZa xo € H is a Pseudo B-Gabor like frame in H
then its frame operator S defined by, S(z) = > (2, EZ,T.Bx0) EB,TB z(, for all

a
mneZ
x € H is called a Pseudo B-Gabor like frame operator. These operators are now

characterized as follows.

Theorem 3.7. Let B : L*(R) — H be an invertible map. A bounded linear operator
S on H is a Pseudo B-Gabor like frame operator if and only if S = TT*, where
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T = BA and A is a surjective operator on L*(R) commuting with some translation

T, and some modulation Ey for some a,b > 0 with ab < 1.

Proof. Assume that S is a Pseudo B-Gabor like frame operator on ‘H

& B71S(B71)* is a Gabor frame operator on L*(R)

& B71S(B71)* = AA* where A is a surjective operator on L?(R) commuting
with some T}, and Ej for some a,b > 0 with ab < 1, by Theorem 7 in [9].

& S = BAA*B* = (BA)(BA)* = TT* with T = BA, where A is a surjective
operator on L?(R) commuting with some T, and Ej, for a,b > 0 with ab < 1. O

The observation made above is very specific for the operator B : L?(R) — H
since the frame under consideration in #H is a Pseudo B-Gabor like frame and not
a Pseudo T-Gabor like frame, even in the case when A is also invertible. It may be
interesting to look at the Gabor frames contributing to this context. Assume that
S = TT* where T = BA, B : L?(R) — H is invertible and A is a surjective operator
on L*(R) which commutes with some translation T, and some modulation Fj, for
some a,b > 0 with ab < 1. The existence of a Parseval Gabor frame of the form
{EmbThagtmnez in L2(R) together with the surjectivity and commutativity of A
ensure that A{EmpTnag}tmmnez) = {AEmpTneg = EmpTnaAg}tmnez is also a Gabor
frame in L?(R). This frame is used for generating a Pseudo B-Gabor like frame
B{EmpTrnaAg}mmez) in H.

Example 3.8. For 5,7 € C — {0}, with | 8| # | v | define
B if t>0
V() =

Also for a > 0, define

~v if t<O.

Bt 0<t<a2
QS,B,’y(t) =
v if a/2<t<a
and extend ¢z~ to R as an a-periodic function.
The multiplication operators My, = and My, on L?(R) defined by My, (f) =
¢p~-f and My, (f) = ¢pn-f, are invertible with inverses MJ;7 = My, , and
' ’ By
Mdjglﬁ = Mq%% respectively with adjoints M;Z&7 = ngﬁ and M;M = M,
Hence My, Myg, =My, o and Mg, Mg, , =My 5 | o
Define T : L*(R) — H = L*(R) by T(f) = BA(f), where B(f) = My, (f) and

A(f) = Mg,_(f) for all f € L*(R). Then TT* = My,

M, .
B2 7182 12
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Since ¢g is a-periodic, A = Mg, commutes with the translation T; for the
given a > 0 and modulation E for every b > 0. However B = My,  does not have
this property. Now, in view of Theorem 3.7, TT™* is a Pseudo B-Gabor like frame
operator on H = L?(R). For the forthcoming discussions, it is significant to note
that T*T =TT* = M¢|ﬁ|2

o2 Mg 2 o is MOt @ Gabor frame operator on L3(R).

For Bessel sequences {uy }rez and {vg}rez in H and K respectively, we can have
a bounded linear operator M : H — K given by M(x) = k§Z<x,vk>uk, where the
series defining M converges for all x € H. The operator M is called the mized frame
operator associated with the Bessel sequences {vy} and {ug} [4].

Here is an interesting connection between mixed frame operators and invertible

operators from L%(R) into H.

Proposition 3.9. Every invertible operator B : L*(R) — H can be identified as a

mized frame operator.

Proof. Let B : L?>(R) — H is a bounded invertible map. Obviously, B maps any
given Gabor frame G = {E,,3Tnag }mnez in L?(R) to a Pseudo B-Gabor like frame
B(G) = {EB,TB Bg},n nez in H. Let M be the mixed frame operator defined by

a

Mf= % Z< fs EmpThag) EB,TB Bg, f € L?(R). Then for all f € L*(R),
ne

)

Mf= X <faEmanag>BEmbB_lBTnaB_lBg
m,neL

=B X <fa Emanag>Emanag
m,nEL

= BS(f), where S is the frame operator of G.

Thus, M = BS. Now, by choosing G as a Parseval Gabor frame in L?(R), we obtain
S = I so that B : L?(R) — H is precisely a mixed frame operator. O

A bounded linear transformation S € B(K, H) is said to intertwine an operator
A€ B(K) to B € B(H) if SA = BS. In this context, S is called an intertwin-
ing operator [11, 16]. We observe that Pseudo B-Gabor like frame operators are

intertwining operators.

Theorem 3.10. Let Sp be a Pseudo B-Gabor like frame operator on H whose
mvolved B-modulations and B-translations are Egb, Tffl, m,n € 7 respectively.
Then Sg intertwines (EZ_,)* to EB, and (TB,,)* to TE respectively.

Proof. Let {Engrixo}m,neZ be a Pseudo B-Gabor like frame in . Then
{EB, T8 20} innez = BUEmpTnag}mnez) where 2o = Bg and {EpThagtmnez 18 a
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Gabor frame in L2(R). If Sp is the frame operator of {EZ, T8 x4}, nez, then for
each k € Z,

SB(E_Bkb)*x = m%)GZ«E_Bkb)*x, E’ngﬁwaﬁbTrgﬂ?o
_ B 5 oo
B m,§€Z<x7 E(m—k‘)anax0>Emanag;0
_ BB 5 .
- l”LZez<x’ By Tna0) iy Tra®o

= Eﬁ(l EGZ(% ERTE x0) EFTE x0)

= Eg)SB.’L' for all x € H.

Thus Sp(EB,,)* = EESp for all k € Z.
Now by Proposition 3.3 (i), EZ, TB = e?mmbnaTB EB, for all m,n € Z.
Hence for each k € Z,

_ * 2mimbna B 7B 2mimbna B 7B
= m%]ez((T_,m) z,e T B xo)e T Er o

= X (T8,,)z,TE EB 2)TB EB, x
mne”

= T,ZSBQC for all z € H, as computed above.

Thus Sp(T5,,)* = TBSp for all k € Z. O

Writing U = EP and V = TB, from Proposition 3.3 (i), we obtain UmV" =
Engri = emmmeTﬁEfw = eZmimbnaynyrm for all m, n € Z. Hence {U™ V" 20} mnez
= {ePrimnabynyymyt ez This is a remarkable property of Pseudo B-Gabor like

frames in H.

Proposition 3.11. Let {U™V"20}mnez be a frame in H where U,V € B(H) are
invertible operators. If U™V "xy = e2™mnaby/nim g for all m,n € Z and for some
a,b > 0 with ab < 1, then the system of equations U*X = X Ejy, and VFX = X T,

k € Z, has a solution in B(L*(R),H).

Proof. For the given pair of parameters a,b > 0 such that ab < 1, choose a Gabor
frame G = {E,pThag}mnez in L?(R). Let B be the mixed frame operator defined
by

Bf = 3 (f EmTuag)U™"V" a0, f € L*(R).

Now, for all k € Z and f € L?(R),
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BEwf = mZ€Z<Ekbf7 ErnpThag)U™V g

)

= Y Af, En—ipTnag) U™ V™20

m,neL

=, Ez<f’ EpTrag)UHR Ve,

,nNE

= Uk(l Ez<f’ EpTag)UV o)
,ne

= U*(BY).

Hence U¥B = BE},, for all k € Z. On the other hand,

BTy.f = m %:eZ<Tkafa Emanag>UmVn='E0
= 3 <Tk:af7 e27rimnaanaEmbg>eZm'mnabvn Um$0
m,ne”Z
= m,§€Z<f’ T(n—k)aEmbg> VU™ xg
= 5 _(f, TiaBmpg)VHU™ g
I,mEZ

=V*Bf for all k € Z and f € L*(R).
Hence V¥B = BTy, for all k € Z. O

4. PSEUDO GABOR FRAMES IN SEPARABLE HILBERT SPACES

For each invertible bounded linear map B : L*(R) — H, the bounded linear
operator BB* on H is positive and invertible. Hence it becomes a frame operator

of some frame in H. Interestingly, this frame operator corresponds to a Pseudo
B-Gabor like frame in H.

Proposition 4.1. Every pair of frame parameters a,b > 0 satisfying ab < 1 yields

a Pseudo B-Gabor like frame in H with BB* as its frame operator.

Proof. For each pair of translation and modulation parameters a,b > 0 satisfying
0 < ab < 1, always there exists a tight Gabor frame {E,,475090}mnez in L*(R)
with identity operator as frame operator (see [8]). If B : L?(R) — H is a bounded
invertible linear map, then B({EppThago}mnez) = {EﬁbT,iBgo}mmez is a Pseudo

B-Gabor like frame in H with frame operator BI B* = BB*. O

Apart from the positivity and invertibility of the Gabor frame operators on L?(R),
their commutativity with some specific modulation and translation operators were
significant in [8] for characterizing the Gabor frame operators on L?(R). Here we

look at the similar situation in the context of Pseudo B-Gabor like frames.
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Theorem 4.2. The following are equivalent for a given invertible bounded linear
operator B : L*(R) — H.

i) B*B is a Gabor frame operator on L*(R).

i1) Every Pseudo B-Gabor like frame operator on H commutes with its involved
B-modulations EB, and B-translations TY, m,n € Z.

i11) There exists a Parseval Pseudo B-Gabor like frame in H for every pair of

frame parameters a and b with ab < 1.

Proof. 1) = ii): Assume that S is the frame operator of a Pseudo B-Gabor like
frame {EflefanO}m,neZ in H for some frame parameters a,b > 0 with ab < 1. Then
B~!:H — L?(R) maps this frame to the Gabor frame { E,;,yT1,a B~ 170 }m.nez whose
frame operator is B~1S(B~1)*. Hence the operator B~1S(B~1)* commutes with

E,.p and Ty, for all m,n € Z. Now, assuming (i), we obtain

SEB, = SBE,,B~! = S(B~)*(B*B)E,, B~*
= S(B~YWE,w(B*B)B~! = S(B~Y)*E,;, B*
= BB 'S(B~YE,,B* = BE,,(B~'S(B~!)*)B*
= BE,,2B~1S = EB, S for all m € Z.

Similarly ST.Z = T2 S for all n € Z.

ii) = iii): For every pair of frame parameters a and b with ab < 1, there is always a
Gabor frame in L?(R) and hence there is a Pseudo B-Gabor like frame in H. Since
by (ii), the frame operator S of such a Pseudo B-Gabor like frame P commutes with

1/2 Hence

its involved B-modulations and B-translations, so does the operator S~
the image frame S~/2(P) will be a Parseval Pseudo B-Gabor like frame in # with
frame parameters a and b.

iii) = i): Let P be a Parseval Pseudo B-Gabor like frame in H with frame param-
eters @ and b. Then B~1(P) will be a Gabor frame in L?*(R) with frame opera-
tor B1I(B~1)* = (B*B)~!. Thus (B*B)~! commutes with E,,;, and T}, for all

m,n € Z and hence its inverse B*B also has this property. O

Thus, each B as above has a specific control in terms of the bounded linear
operator B*B on L?(R) for yielding Parseval Pseudo B-Gabor like frames in #
as well as Pseudo B-Gabor like frames having canonical dual frames with same

structure. Such frames are more similar to Gabor frames in L?(R).
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Example 4.3. For o, € C— {0} with | a | # | 8|, let
a if <0

¢o¢,,8 (.’L‘) =
g if >0

The multiplication operator My, , on L?(R) defined by My, () = Gap-f is
invertible with inverse My _, g1

Also, (Mg, ;)" = Mgaﬁ so that Mg My, 5 = Mg 5 -
Being a multiplication operator, My, , commutes with all the modulations Eyp.
However, since ¢, g is not a-periodic for any a > 0, My, , does not commute with
any translations 7},,.

Hence M(’;aﬁM%ﬁ

L?(R). Thus, in view of Theorem 4.2, there can not exist a Parseval Pseudo My, ,-

= M¢|o¢\2 o CaN MOt become a Gabor frame operator on
Gabor like frame in L?(R). But still, being an invertible map, My, , maps Gabor

frames into frames which are Pseudo My, ,-Gabor like frames in L3 (R).

In view of the above discussions we give a new definition which is suitable for

identifying the structures more specifically.

Definition 4.4. A Pseudo B-Gabor like frame {EZ, T2 2}, ez in a separable
Hilbert space H is said to be a Pseudo B-Gabor frame if B*B is a Gabor frame
operator on L?(R). The frame operator of a Pseudo B-Gabor frame is called a

Pseudo B-Gabor frame operator.

Corollary 4.5. If U : L?*(R) — H is a unitary operator, then every Pseudo U-
Gabor like frame operator on H commutes with its involved U-modulations and U -

translations.

Proof. If U : L?>(R) — H is a unitary operator, then U*U = Ir2(g). For each pair
of frame parameters a,b > 0 (with ab < 1), there is always a Parseval Gabor frame
in L2(R). Hence U*U = I12(R) is a Gabor frame operator on L*(R). Now the claim

follows from Theorem 4.2. O

Another interesting consequence of Theorem 4.2 is the following.

Theorem 4.6. Let B : L*(R) — H be an invertible map such that B*B is a Gabor
frame operator on L*(R). Then for any given Gabor frame {EmpTnagtmnez in
L?(R) with frame operator S, the canonical dual frame of the Pseudo B-Gabor frame
{EﬁngBg}m,neZ in H is again a Pseudo B-Gabor frame with generator CS™'g
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where C = (B*)~t. Also, this Pseudo B-Gabor frame has a dual Pseudo C-Gabor

frame with same generator CS™1g.

Proof. Let B : L?*(R) — H be an invertible map. Take C' = (B*)~!, then C :
L?(R) — H is an invertible operator and C*C = ((B*)~1)*(B*)~! = B~YB*)~! =
(B*B)~!. Since B*B is a Gabor frame operator on L?(R) so is its inverse (B*B)~!.
Thus C*C is also a Gabor frame operator on L?(R).

Now, for a given Gabor frame G = {E,pThag }mnez in L?(R) with frame operator
S, the frame operator of the Pseudo B-Gabor frame B(G) = {EB, TB Bg},, ez is
BSB*. Hence the canonical dual frame of B(G) is (BSB*)~1(B(G))

= (BSB*)_I({EngrﬁBQ}m,nGZ)

= {EB,TB (BSB*)"'Bg}mmnez, by Theorem 4.2 (ii)
={Eo, T (B*) 'S gbmnez

= {EB,TE CS g} mnez, since C = (B*)7L,

Thus, the canonical dual frame of the Pseudo B-Gabor frame B(G) in H is again a
Pseudo B-Gabor frame with generator C'S~!g and same frame parameters.

Now, mapping the canonical dual Gabor frame S™(G) = {EmpTnaS 19} mnez
of G by C, we obtain the Pseudo C-Gabor frame {ES, T$,CS™ g}, nez. Frame
operator of this frame is CS~!C* = (B*)"1S~1((B*)"1)* = (B*)" 1S~ 1(B™!) =
(BSB*)™!, the canonical dual frame operator of B(G). Thus both the frames
{EB,TBCS g} nez and {EC, TS, CS™ g} nez are dual frames of B(G) with com-

mon generator C'S™1g. O

Obviously, when the map B : L?(R) — H is unitary, we have C = (B*)™! = B
so that the above frames are precisely the same.

The following version of Example 3.8 is a specific situation of Theorem 4.6. If
B, C: L*(R) — H are invertible with C = (B*)™!, then {EZ, T2 CS~'g},, nez and

{Eng,%CS -1 9}mnez are respectively, Pseudo B-Gabor frame and Pseudo C-Gabor

frame on H with same generator C'S~'g and same frame operator (BSB*)~1.

Example 4.7. Define B : L*(R) — L*(R) by B(f) = (Mg, Do)(f) for all f €
L?(R), where D, is the dilation unitary operator and My, ., is the multiplication
operator on L?(R) as we have seen in Example 3.8.

Observe that

B" = Dy(Mg, )" = D1 My, and B*B =DM, Do
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It can be easily verified that B*B commutes with modulation Ep and translation
T,. Further, B*B is positive and invertible. Hence B*B is a Gabor frame operator
on L*(R). Also we see that,

BEu,B~f(t) = (BEmD1 My, ,)(t) = @) f(t) = Em f(1),

BT, B~ f(t) = BTy (/] « ](b%%(at)f(at))
= 03,(1)01,1.(t ~ naf) f(t — nafa)

Taking C' = (B*)~! and by simple computations, we obtain

@l
2=

CEmC f(t) = (BY) ' EmpB* f(t) = ™m0 f(t) = Eu f(t),
CTnaC~ f(t) = (B*) ' Tna B*f(t) = ¢1 1(t)¢55(t —na/a)f(t — na/a).
7,y b}
Thus BE,,B~" = CE,,,C~", but BT,,,B~! # CT},,,C'.
Hence EB, T8 £ EC, TC and for a given Gabor frame {E,pTheg}mnez in L?(R)

with frame operator
Sa C{EmanaS_lg}m,nGZ = {EngngS_lg}m,neZ

and
{EﬁbTrgcsilg}m,nEZ

are different frames with same generator C'S~!g and same frame operator (BSB*)~L.

Images of Gabor frames under unitary transformations have received remarkable
research attention. Non-unitary approaches also are found to be significant in the
context of quantum field theory [17]. This leads to the study about Pseudo B-Gabor

like frames.
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