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GABOR LIKE STRUCTURED FRAMES IN SEPARABLE

HILBERT SPACES

Jineesh Thomas a, ∗, N.M.M. Namboothiri b and T.C.E. Nambudiri c

Abstract. We obtain a structured class of frames in separable Hilbert spaces which
are generalizations of Gabor frames in L2(R) in their construction aspects. For this,
the concept of Gabor type unitary systems in [13] is generalized by considering a
system of invertible operators in place of unitary systems. Pseudo Gabor like frames
and pseudo Gabor frames are introduced and the corresponding frame operators are
characterized.

1. Introduction

Frames in separable Hilbert spaces are more flexible tools than orthonormal bases

for transforming elements of the space into square summable complex sequences,

ensuring the faithful reconstruction. They appear as generalizations of orthonormal

bases, but the series expansions using frames are not unique as in the case of an

orthonormal basis. The work [10] of Gabor initiated and formulated a fundamental

approach to the decomposition of signals (elements of L2(R)) in terms of elementary

signals. Duffin and Schaeffer absorbed the fundamental notion of Gabor and defined

formally the concept of a frame in a Hilbert space [6]. The significant work of Janssen

[15] made it an independent topic of mathematical investigation in 1980s. After the

innovative work [5] of Daubechies, Grossmann and Meyer in 1986, the theory of

frames began to be studied extensively.

Among the different classes of frames, Gabor frames (also called Weyl-Heisenberg

frames) in L2(R) play the key role in the theory. Gabor frames are very special in

their nature as they are constructed from a single element of the space using a system

of unitary operators on L2(R). They transform each element f of the space L2(R)
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into a corresponding square summable complex sequence which is indexed by the

time-frequency lattice points.

Frame operators are important objects in frame theory [7], [18] since the recon-

struction of an element in the Hilbert space using a frame requires the canonical

dual frame, which is the image of the frame under the inverse of the frame operator.

These operators were completely characterized in the contexts of abstract frames

and Gabor frames in [7] and [8] respectively. For a frame in an abstract Hilbert

space H, a specific structure similar to that of a Gabor frame in L2(R) can not

be expected in the general setting. Structured frames in separable Hilbert spaces

generated by Gabor type unitary systems were discussed in [13] (Chapter 4).

In this article, we attempt for this in a more general way, using invertible opera-

tors from L2(R) into the Hilbert space concerned. Towards this, when Gabor type

unitary systems are replaced by a system of invertible operators from L2(R) into

the Hilbert space, we encounter a lot of non trivialities. This is the background of

our discussion, but our approach is entirely different from that of [13]. Operators

which generate frames with a prescribed frame operator [1] is an interesting theme.

Towards this, we provide characterizations for the frame operators of the newly

introduced structured frames here.

In Section 2, some basic definitions and results which are inevitable for the present

work are provided. Pseudo B-Gabor frames in separable Hilbert spaces, their frame

operators and the characterization of these operators are discussed in the next two

Sections.

2. Preliminaries

A countable sequence {fk}∞k=1 of elements in a separable Hilbert space H is a

frame for H if there exist constants α, β > 0 such that,

α∥f∥2 ≤
∞∑
k=1

| ⟨f, fk⟩ |2 ≤ β∥f∥2, ∀ f ∈ H.

If {fk}∞k=1 satisfies the upper frame inequality, then it is called a Bessel sequence.

The numbers α and β are called lower and upper frame bounds respectively. If a

frame has equal frame bounds, then it is called a tight frame. In particular, a tight

frame with α = β = 1 is called a Parseval frame or normalized tight frame.
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For a Bessel sequence {fk}∞k=1 ⊂ H, the operator T : l2(N) → H defined by

T{ck}∞k=1 =
∑∞

k=1 ckfk is a bounded linear operator known as the synthesis operator

or pre-frame operator. The adjoint operator T ∗ : H → l2(N) of T given by T ∗f =

{⟨f, fk⟩}∞k=1 is called the analysis operator. The operator S : H → H defined by

Sf = TT ∗f =
∑∞

k=1⟨f, fk⟩fk, f ∈ H is called the frame operator of {fk}∞k=1.

The frame operator of a tight frame is a scalar multiple of the identity operator

and that of a normalized tight frame is the identity operator. The frame operator

S of a frame {fk}∞k=1 is a bounded, invertible, self-adjoint, positive operator on

H. The frame {S−1fk}∞k=1 is called the canonical dual frame of {fk}∞k=1 in H . A

frame {fk}∞k=1 and its canonical dual frame {S−1fk}∞k=1 together give two different

reconstruction formulas:

f =

∞∑
k=1

⟨f, S−1fk⟩fk and f =

∞∑
k=1

⟨f, fk⟩S−1fk, for all f ∈ H.

Gabor frames in L2(R) are generated by two classes of operators on L2(R), namely

the translation and modulation operators. For a, b ∈ R and f ∈ L2(R), the trans-

lation operator Ta on L2(R) is defined by (Taf)(x) = f(x − a), x ∈ R and the

modulation operator Eb on L2(R) by (Ebf)(x) = e2πibxf(x), x ∈ R. A frame in

L2(R) of the form {EmbTnag}m,n∈Z for some g ∈ L2(R) and a, b > 0 is called a Ga-

bor frame or Weyl-Heisenberg frame. Gabor analysis aims at representing functions

f ∈ L2(R) as superposition of translated and modulated versions of a fixed window

function g ∈ L2(R). If f ∈ L2(R) is expanded as f =
∑
m,n∈Z

cm,n EmbTnag using

a Gabor frame {EmbTnag}m,n∈Z where cm,n = ⟨f,EmbTnah⟩, h = S−1g, then the

square summable sequence {cm,n}(m,n)∈Z×Z is the representation of the signal f in

the time-frequency plane: aZ× bZ.
For more details on this basic discussion, we suggest to refer the survey article of

Casazza [2] and the monographs of Christensen [4], Gröchenig [12] and Heil [14].

3. Pseudo Gabor Like Frames in Separable Hilbert Spaces

In our discussions, H and K will denote separable Hilbert spaces. We begin with

a simple observation, analogous to Corollary 5.3.2 in [4], on the interplay of bounded

linear operators between separable Hilbert spaces.
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Lemma 3.1. Let H and K be separable Hilbert spaces. Then every surjective

bounded linear operator A : H → K maps frames in H to frames in K. In par-

ticular, every invertible bounded linear operator between two separable Hilbert spaces

maps frames in one to frames in the other.

Proof. Let {uk}k∈N be a frame in H with frame bounds 0 < α ≤ β < ∞. Then

for all x ∈ H, α∥x∥2 ≤
∑

k∈N | ⟨x, uk⟩ |2≤ β∥x∥2. Obviously, for all y ∈ K,∑
k∈N

| ⟨y,Auk⟩ |2=
∑
k∈N

| ⟨A∗y, uk⟩ |2≤ β∥A∗y∥2 ≤ β∥A∗∥2∥y∥2 = β∥A∥2∥y∥2.

Since A : H → K is surjective, by Lemma 2.5.1 in [4], it has a right inverse

B : K → H such that B ̸= 0 and AB = IK. But then IK = (AB)∗ = B∗A∗.

For y ∈ K, there is x ∈ H for which y = Ax = IKAx = B∗A∗Ax.

Hence ∥y∥2 = ∥B∗A∗Ax∥2 ≤ ∥B∗∥2∥A∗Ax∥2

≤ ∥B∗∥2( 1
α
)
∑
k∈N

| ⟨A∗Ax, uk⟩ |2

= ∥B∗∥2( 1
α
)
∑
k∈N

| ⟨y,Auk⟩ |2, where ∥B∗∥ > 0.

Thus α∥B∗∥−2∥y∥2 ≤
∑
k∈N

| ⟨y,Auk⟩ |2≤ β∥A∥2∥y∥2, as desired. �

In the situation above, the image frame {Auk : k ∈ N} has the frame operator S′

defined for all x ∈ K by

S′x =
∑
k∈N

⟨x,Auk⟩Auk = A(
∑
k∈N

⟨A∗x, uk⟩uk) = ASA∗(x),

where S is the frame operator of the frame {uk : k ∈ N} in H.

Lemma 3.1 motivates to look at the aspects of the images of Gabor frames under

invertible bounded linear operators B : L2(R) → H. Since

B({EmbTna g}m,n∈Z) = {BEmbTna g}m,n∈Z
= {BEmbB−1BTnaB

−1(Bg)}m,n∈Z
= {(BEbB−1)m(BTaB

−1)n(Bg)}m,n∈Z,

they are generated by the action of a group of operators {EBmbTBna}m,n∈Z on a single

generator Bg, where EBmb = BEmbB
−1 and BTnaB

−1 = TBna, m, n ∈ Z. Thus,

such image frames are structured frames in H. For proceeding further, the following

definitions will be useful.

Definition 3.2. For an invertible bounded linear operator B : L2(R) → H and

α ∈ R, we define B-translation TBα on H by TBα = BTαB
−1 and B-modulation EBα

on H by EBα = BEαB
−1 where Tα and Eα are respectively the translation and
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modulation operators on L2(R). For a > 0 and b > 0, the family {EBmbTBna x0}m,n∈Z
generated by x0 ∈ H is called a Pseudo B-Gabor like system in H. Such a system

is called a Pseudo B-Gabor like frame (Pseudo B-Gabor like Bessel sequence) if it

forms a frame (Bessel sequence) in H. A frame {gm, n} in H is called a Pseudo Gabor

like frame if {gm, n} is a Pseudo B-Gabor like frame for some invertible operator

B : L2(R) → H.

Gabor type unitary systems discussed in [13] were defined by generalizing the

remarkable property TaEb = e−2πiabEbTa of the pair (Ta, Eb) of translation and

modulation operators. Interestingly, for the generalization of the system of operators

generated by the combination TaEb, we need not stick on to the unitary system.

Instead, a system of invertible operators can be considered, as Proposition 3.3 below

suggests.

Proposition 3.3. Let B : L2(R) → H be invertible. Then the following statements

hold.

(i) EBmbT
B
na = e2πimbnaTBnaE

B
mb for all m,n ∈ Z.

(ii) {EBmbTBnax0}m,n∈Z is a Pseudo B-Gabor like frame in H if and only if the

family {TBnaEBmbx0}m,n∈Z is also a frame in H.

Proof. For all f ∈ L2(R), the commutator relation [3]

TaEbf(x) = Ta(e
2πibxf(x)) = e2πib(x−a)f(x− a) = e−2πiabe2πibxTaf(x)

= e−2πiabEbTaf(x) holds for all x ∈ R.

Hence for all f ∈ L2(R), TaEbf = e−2πiabEbTaf

⇔ BTaEbf = Be−2πiabEbTaf = e−2πiabBEbTaf

⇔ TBa E
B
b Bf = e−2πiabEBb T

B
a Bf

⇔ TBa E
B
b x = e−2πiabEBb T

B
a x for all x ∈ H, since B : L2(R) → H is invertible.

Hence EBmbT
B
na = e2πimbnaTBnaE

B
mb for all m,n ∈ Z, proving (i).

Since {EBmbTBnax0}m,n∈Z is a frame in H and e−2πimbna is of absolute value 1, the

required frame inequality for the family {TBnaEBmbx0}m,n∈Z follows directly from that

of {EBmbTBnax0}m,n∈Z. The reverse implication follows similarly. �

Upcoming proposition gives a relation between Pseudo B-Gabor like frame in H
and Gabor frame in L2(R).

Proposition 3.4. The family {EBmbTBna x0}m,n∈Z forms a Pseudo B-Gabor like

frame in H if and only if {EmbTnaB−1x0}m,n∈Z forms a Gabor frame in L2(R).
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Proof. Since {EBmbTBnax0 : m,n ∈ Z} = {BEmbB−1BTnaB
−1x0 : m,n ∈ Z}

= B({EmbTnaB−1x0 : m,n ∈ Z}),
the proof follows for both the cases of implications from Lemma 3.1. �

It is well known that if ab > 1 for a given pair of frame parameters a, b > 0,

then no g ∈ L2(R) can generate a frame of the form {EmbTnag}m,n∈Z (see Theorem

11.3.1 in [4]). We make an analogous observation here.

Proposition 3.5. Let H be a separable Hilbert space and B : L2(R) → H be a

bounded invertible linear map. For x0 ∈ H and a, b > 0, {EBmbTBnax0}m,n∈Z does not

form a Pseudo B-Gabor like frame for H whenever ab > 1.

Proof. Let ab > 1. If {EBmbTBnax0}m,n∈Z is a Pseudo B-Gabor like frame in H, then

Proposition 3.4 yields that {EmbTnaB−1x0}m,n∈Z is a Gabor frame in L2(R). But
then necessarily ab ≤ 1, leading to a contradiction. �

It is also known that, for given g ∈ L2(R) and a, b > 0, {EmbTnag}m,n∈Z is a

Bessel sequence in L2(R) if and only if {Em/aTn/bg}m,n∈Z is a Bessel sequence in

L2(R) (see Lemma 12.2.2 in [4]). An analogous observation follows from Proposition

3.4.

Lemma 3.6. Let H be a separable Hilbert space, B : L2(R) → H be a bounded

invertible linear map and x0 ∈ H. For a, b > 0, the family {EBmbTBnax0}m,n∈Z forms

a Pseudo B-Gabor like Bessel sequence in H if and only if {EBm/aT
B
n/bx0}m,n∈Z is a

Pseudo B-Gabor like Bessel sequence in H.

Proof. {EBmbTBnax0}m,n∈Z is a Pseudo B-Gabor like Bessel sequence in H
⇔ {EmbTnaB−1x0}m,n∈Z is a Bessel sequence in L2(R), by Proposition 3.4

⇔ {Em/aTn/bB−1x0}m,n∈Z is a Bessel sequence in L2(R)
⇔ {EBm/aT

B
n/bx0}m,n∈Z is a Pseudo B-Gabor like Bessel sequence in H �

If the family {EBmbTBnax0}m,n∈Z, x0 ∈ H is a Pseudo B-Gabor like frame in H
then its frame operator S defined by, S(x) =

∑
m,n∈Z

⟨x,EBmbTBnax0⟩EBmbTBnax0, for all

x ∈ H is called a Pseudo B-Gabor like frame operator. These operators are now

characterized as follows.

Theorem 3.7. Let B : L2(R) → H be an invertible map. A bounded linear operator

S on H is a Pseudo B-Gabor like frame operator if and only if S = TT ∗, where
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T = BA and A is a surjective operator on L2(R) commuting with some translation

Ta and some modulation Eb for some a, b > 0 with ab ≤ 1.

Proof. Assume that S is a Pseudo B-Gabor like frame operator on H
⇔ B−1S(B−1)∗ is a Gabor frame operator on L2(R)
⇔ B−1S(B−1)∗ = AA∗, where A is a surjective operator on L2(R) commuting

with some Ta and Eb for some a, b > 0 with ab ≤ 1, by Theorem 7 in [9].

⇔ S = BAA∗B∗ = (BA)(BA)∗ = TT ∗ with T = BA, where A is a surjective

operator on L2(R) commuting with some Ta and Eb for a, b > 0 with ab ≤ 1. �

The observation made above is very specific for the operator B : L2(R) → H
since the frame under consideration in H is a Pseudo B-Gabor like frame and not

a Pseudo T -Gabor like frame, even in the case when A is also invertible. It may be

interesting to look at the Gabor frames contributing to this context. Assume that

S = TT ∗ where T = BA, B : L2(R) → H is invertible and A is a surjective operator

on L2(R) which commutes with some translation Ta and some modulation Eb for

some a, b > 0 with ab ≤ 1. The existence of a Parseval Gabor frame of the form

{EmbTnag}m,n∈Z in L2(R) together with the surjectivity and commutativity of A

ensure that A({EmbTnag}m,n∈Z) = {AEmbTnag = EmbTnaAg}m,n∈Z is also a Gabor

frame in L2(R). This frame is used for generating a Pseudo B-Gabor like frame

B({EmbTnaAg}m,n∈Z) in H.

Example 3.8. For β, γ ∈ C− {0}, with | β | ̸= | γ | define

ψβ,γ(t) =

 β if t ≥ 0

γ if t < 0.
Also for a > 0, define

ϕβ,γ(t) =

 β if 0 < t ≤ a/2

γ if a/2 < t ≤ a
and extend ϕβ,γ to R as an a-periodic function.

The multiplication operators Mψβ,γ
and Mϕβ,γ on L2(R) defined by Mψβ,γ

(f) =

ϕβ,γ .f and Mϕβ,γ (f) = ϕβ,γ .f , are invertible with inverses M−1
ψβ,γ

= Mψ 1
β
, 1γ

and

M−1
ϕβ,γ

= Mϕ 1
β
, 1γ

respectively with adjoints M∗
ψβ,γ

= Mψβ,γ
and M∗

ϕβ,γ
= Mϕβ,γ

.

Hence M∗
ψβ,γ

Mψβ,γ
=Mψ|β|2,|γ|2

and M∗
ϕβ,γ

Mϕβ,γ =Mϕ|β|2,|γ|2
.

Define T : L2(R) → H = L2(R) by T (f) = BA(f), where B(f) = Mψβ,γ
(f) and

A(f) =Mϕβ,γ (f) for all f ∈ L2(R). Then TT ∗ =Mψ|β|2,|γ|2
Mϕ|β|2,|γ|2

.
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Since ϕβ,γ is a-periodic, A = Mϕβ,γ commutes with the translation Ta for the

given a > 0 and modulation Eb for every b > 0. However B =Mψβ,γ
does not have

this property. Now, in view of Theorem 3.7, TT ∗ is a Pseudo B-Gabor like frame

operator on H = L2(R). For the forthcoming discussions, it is significant to note

that T ∗T = TT ∗ =Mψ|β|2,|γ|2
Mϕ|β|2,|γ|2

is not a Gabor frame operator on L2(R).

For Bessel sequences {uk}k∈Z and {vk}k∈Z in H and K respectively, we can have

a bounded linear operator M : H → K given by M(x) = Σ
k∈Z

⟨x, vk⟩uk, where the

series definingM converges for all x ∈ H. The operatorM is called the mixed frame

operator associated with the Bessel sequences {vk} and {uk} [4].

Here is an interesting connection between mixed frame operators and invertible

operators from L2(R) into H.

Proposition 3.9. Every invertible operator B : L2(R) → H can be identified as a

mixed frame operator.

Proof. Let B : L2(R) → H is a bounded invertible map. Obviously, B maps any

given Gabor frame G = {EmbTnag}m,n∈Z in L2(R) to a Pseudo B-Gabor like frame

B(G) = {EBmbTBnaBg}m,n∈Z in H. Let M be the mixed frame operator defined by

Mf = Σ
m,n∈Z

⟨f,EmbTnag⟩EBmbTBnaBg, f ∈ L2(R). Then for all f ∈ L2(R),

Mf = Σ
m,n∈Z

⟨f,EmbTnag⟩BEmbB−1BTnaB
−1Bg

= B Σ
m,n∈Z

⟨f,EmbTnag⟩EmbTnag

= BS(f), where S is the frame operator of G.

Thus, M = BS. Now, by choosing G as a Parseval Gabor frame in L2(R), we obtain
S = IL2(R) so that B : L2(R) → H is precisely a mixed frame operator. �

A bounded linear transformation S ∈ B(K,H) is said to intertwine an operator

A ∈ B(K) to B ∈ B(H) if SA = BS. In this context, S is called an intertwin-

ing operator [11, 16]. We observe that Pseudo B-Gabor like frame operators are

intertwining operators.

Theorem 3.10. Let SB be a Pseudo B-Gabor like frame operator on H whose

involved B-modulations and B-translations are EBmb, T
B
na, m,n ∈ Z respectively.

Then SB intertwines (EB−mb)
∗ to EBmb and (TB−na)

∗ to TBna respectively.

Proof. Let {EBmbTBnax0}m,n∈Z be a Pseudo B-Gabor like frame in H. Then

{EBmbTBnax0}m,n∈Z = B({EmbTnag}m,n∈Z) where x0 = Bg and {EmbTnag}m,n∈Z is a
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Gabor frame in L2(R). If SB is the frame operator of {EBmbTBnax0}m,n∈Z, then for

each k ∈ Z,

SB(E
B
−kb)

∗x = Σ
m,n∈Z

⟨(EB−kb)∗x,EB
mbT

B
nax0⟩EBmbTBnax0

= Σ
m,n∈Z

⟨x,EB(m−k)bT
B
nax0⟩EBmbTBnax0

= Σ
l,n∈Z

⟨x,EBlbTBnax0⟩EB(l+k)bT
B
nax0

= EBkb( Σ
l,n∈Z

⟨x,EBlbTBnax0⟩EBlbTBnax0)

= EBkbSBx for all x ∈ H.

Thus SB(E
B
−kb)

∗ = EBkbSB for all k ∈ Z.
Now by Proposition 3.3 (i), EBmbT

B
na = e2πimbnaTBnaE

B
mb for all m,n ∈ Z.

Hence for each k ∈ Z,

SB(T
B
−ka)

∗x = Σ
m,n∈Z

⟨(TB−ka)∗x,EBmbTBnax0⟩EBmbTBnax0

= Σ
m,n∈Z

⟨(TB−ka)∗x, e2πimbnaTBnaEBmbx0⟩e2πimbnaTBnaEBmbx0

= Σ
m,n∈Z

⟨(TB−ka)∗x, TBnaEBmbx0⟩TBnaEBmbx0

= TBkaSBx for all x ∈ H, as computed above.

Thus SB(T
B
−ka)

∗ = TBkaSB for all k ∈ Z. �

Writing U = EBb and V = TBa , from Proposition 3.3 (i), we obtain UmV n =

EBmbT
B
na = e2πimbnaTBnaE

B
mb = e2πimbnaV nUm for allm,n ∈ Z. Hence {UmV nx0}m,n∈Z

= {e2πimnabV nUmx0}m,n∈Z. This is a remarkable property of Pseudo B-Gabor like

frames in H.

Proposition 3.11. Let {UmV nx0}m,n∈Z be a frame in H where U, V ∈ B(H) are

invertible operators. If UmV nx0 = e2πimnabV nUmx0 for all m,n ∈ Z and for some

a, b > 0 with ab ≤ 1, then the system of equations UkX = XEkb and V
kX = XTka,

k ∈ Z, has a solution in B(L2(R),H).

Proof. For the given pair of parameters a, b > 0 such that ab ≤ 1, choose a Gabor

frame G = {EmbTnag}m,n∈Z in L2(R). Let B be the mixed frame operator defined

by

Bf = Σ
m,n∈Z

⟨f,EmbTnag⟩UmV nx0, f ∈ L2(R).

Now, for all k ∈ Z and f ∈ L2(R),
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BEkbf = Σ
m,n∈Z

⟨Ekbf,EmbTnag⟩UmV nx0

= Σ
m,n∈Z

⟨f,E(m−k)bTnag⟩UmV nx0

= Σ
l,n∈Z

⟨f,ElbTnag⟩U (l+k)V nx0

= Uk( Σ
l,n∈Z

⟨f,ElbTnag⟩U lV nx0)

= Uk(Bf).

Hence UkB = BEkb for all k ∈ Z. On the other hand,

BTkaf = Σ
m,n∈Z

⟨Tkaf,EmbTnag⟩UmV nx0

= Σ
m,n∈Z

⟨Tkaf, e2πimnabTnaEmbg⟩e2πimnabV nUmx0

= Σ
m,n∈Z

⟨f, T(n−k)aEmbg⟩V nUmx0

= Σ
l,m∈Z

⟨f, TlaEmbg⟩V (l+k)Umx0

= V kBf for all k ∈ Z and f ∈ L2(R).

Hence V kB = BTka for all k ∈ Z. �

4. Pseudo Gabor Frames in Separable Hilbert Spaces

For each invertible bounded linear map B : L2(R) → H, the bounded linear

operator BB∗ on H is positive and invertible. Hence it becomes a frame operator

of some frame in H. Interestingly, this frame operator corresponds to a Pseudo

B-Gabor like frame in H.

Proposition 4.1. Every pair of frame parameters a, b > 0 satisfying ab ≤ 1 yields

a Pseudo B-Gabor like frame in H with BB∗ as its frame operator.

Proof. For each pair of translation and modulation parameters a, b > 0 satisfying

0 < ab ≤ 1, always there exists a tight Gabor frame {EmbTnag0}m,n∈Z in L2(R)
with identity operator as frame operator (see [8]). If B : L2(R) → H is a bounded

invertible linear map, then B({EmbTnag0}m,n∈Z) = {EBmbTBnaBg0}m,n∈Z is a Pseudo

B-Gabor like frame in H with frame operator BIB∗ = BB∗. �

Apart from the positivity and invertibility of the Gabor frame operators on L2(R),
their commutativity with some specific modulation and translation operators were

significant in [8] for characterizing the Gabor frame operators on L2(R). Here we

look at the similar situation in the context of Pseudo B-Gabor like frames.
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Theorem 4.2. The following are equivalent for a given invertible bounded linear

operator B : L2(R) → H.

i) B∗B is a Gabor frame operator on L2(R).
ii) Every Pseudo B-Gabor like frame operator on H commutes with its involved

B-modulations EBmb and B-translations TBna, m,n ∈ Z.
iii) There exists a Parseval Pseudo B-Gabor like frame in H for every pair of

frame parameters a and b with ab ≤ 1.

Proof. i) ⇒ ii): Assume that S is the frame operator of a Pseudo B-Gabor like

frame {EBmbTBnax0}m,n∈Z in H for some frame parameters a, b > 0 with ab ≤ 1. Then

B−1 : H → L2(R) maps this frame to the Gabor frame {EmbTnaB−1x0}m,n∈Z whose

frame operator is B−1S(B−1)∗. Hence the operator B−1S(B−1)∗ commutes with

Emb and Tna for all m,n ∈ Z. Now, assuming (i), we obtain

SEBmb = SBEmbB
−1 = S(B−1)∗(B∗B)EmbB

−1

= S(B−1)∗Emb(B
∗B)B−1 = S(B−1)∗EmbB

∗

= BB−1S(B−1)∗EmbB
∗ = BEmb(B

−1S(B−1)∗)B∗

= BEmbB
−1S = EBmbS for all m ∈ Z.

Similarly STBna = TBnaS for all n ∈ Z.
ii) ⇒ iii): For every pair of frame parameters a and b with ab ≤ 1, there is always a

Gabor frame in L2(R) and hence there is a Pseudo B-Gabor like frame in H. Since

by (ii), the frame operator S of such a Pseudo B-Gabor like frame P commutes with

its involved B-modulations and B-translations, so does the operator S−1/2. Hence

the image frame S−1/2(P) will be a Parseval Pseudo B-Gabor like frame in H with

frame parameters a and b.

iii) ⇒ i): Let P be a Parseval Pseudo B-Gabor like frame in H with frame param-

eters a and b. Then B−1(P) will be a Gabor frame in L2(R) with frame opera-

tor B−1I(B−1)∗ = (B∗B)−1. Thus (B∗B)−1 commutes with Emb and Tna for all

m,n ∈ Z and hence its inverse B∗B also has this property. �

Thus, each B as above has a specific control in terms of the bounded linear

operator B∗B on L2(R) for yielding Parseval Pseudo B-Gabor like frames in H
as well as Pseudo B-Gabor like frames having canonical dual frames with same

structure. Such frames are more similar to Gabor frames in L2(R).
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Example 4.3. For α, β ∈ C− {0} with | α | ̸= | β |, let

ϕα,β(x) =

 α if x ≤ 0

β if x > 0

The multiplication operator Mϕα,β
on L2(R) defined by Mϕα,β

(f) = ϕα,β.f is

invertible with inverse Mϕα−1,β−1 .

Also, (Mϕα,β
)∗ =Mϕα,β

so that M∗
ϕα,β

Mϕα,β
=Mϕ|α|2,|β|2

.

Being a multiplication operator, Mϕα,β
commutes with all the modulations Emb.

However, since ϕα,β is not a-periodic for any a > 0, Mϕα,β
does not commute with

any translations Tna.

Hence M∗
ϕα,β

Mϕα,β
= Mϕ|α|2,|β|2

can not become a Gabor frame operator on

L2(R). Thus, in view of Theorem 4.2, there can not exist a Parseval Pseudo Mϕα,β
-

Gabor like frame in L2(R). But still, being an invertible map, Mϕα,β
maps Gabor

frames into frames which are Pseudo Mϕα,β
-Gabor like frames in L2(R).

In view of the above discussions we give a new definition which is suitable for

identifying the structures more specifically.

Definition 4.4. A Pseudo B-Gabor like frame {EBmbTBna x0}m,n∈Z in a separable

Hilbert space H is said to be a Pseudo B-Gabor frame if B∗B is a Gabor frame

operator on L2(R). The frame operator of a Pseudo B-Gabor frame is called a

Pseudo B-Gabor frame operator.

Corollary 4.5. If U : L2(R) → H is a unitary operator, then every Pseudo U -

Gabor like frame operator on H commutes with its involved U -modulations and U -

translations.

Proof. If U : L2(R) → H is a unitary operator, then U∗U = IL2(R). For each pair

of frame parameters a, b > 0 (with ab ≤ 1), there is always a Parseval Gabor frame

in L2(R). Hence U∗U = IL2(R) is a Gabor frame operator on L2(R). Now the claim

follows from Theorem 4.2. �

Another interesting consequence of Theorem 4.2 is the following.

Theorem 4.6. Let B : L2(R) → H be an invertible map such that B∗B is a Gabor

frame operator on L2(R). Then for any given Gabor frame {EmbTnag}m,n∈Z in

L2(R) with frame operator S, the canonical dual frame of the Pseudo B-Gabor frame

{EBmbTBnaBg}m,n∈Z in H is again a Pseudo B-Gabor frame with generator CS−1g
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where C = (B∗)−1. Also, this Pseudo B-Gabor frame has a dual Pseudo C-Gabor

frame with same generator CS−1g.

Proof. Let B : L2(R) → H be an invertible map. Take C = (B∗)−1, then C :

L2(R) → H is an invertible operator and C∗C = ((B∗)−1)∗(B∗)−1 = B−1(B∗)−1 =

(B∗B)−1. Since B∗B is a Gabor frame operator on L2(R) so is its inverse (B∗B)−1.

Thus C∗C is also a Gabor frame operator on L2(R).
Now, for a given Gabor frame G = {EmbTnag}m,n∈Z in L2(R) with frame operator

S, the frame operator of the Pseudo B-Gabor frame B(G) = {EBmbTBnaBg}m,n∈Z is

BSB∗. Hence the canonical dual frame of B(G) is (BSB∗)−1(B(G))

= (BSB∗)−1({EBmbTBnaBg}m,n∈Z)

= {EBmbTBna(BSB∗)−1Bg}m,n∈Z, by Theorem 4.2 (ii)

= {EBmbTBna(B∗)−1S−1g}m,n∈Z
= {EBmbTBnaCS−1g}m,n∈Z, since C = (B∗)−1.

Thus, the canonical dual frame of the Pseudo B-Gabor frame B(G) in H is again a

Pseudo B-Gabor frame with generator CS−1g and same frame parameters.

Now, mapping the canonical dual Gabor frame S−1(G) = {EmbTnaS−1g}m,n∈Z
of G by C, we obtain the Pseudo C-Gabor frame {ECmbTCnaCS−1g}m,n∈Z. Frame

operator of this frame is CS−1C∗ = (B∗)−1S−1((B∗)−1)∗ = (B∗)−1S−1(B−1) =

(BSB∗)−1, the canonical dual frame operator of B(G). Thus both the frames

{EBmbTBnaCS−1g}m,n∈Z and {ECmbTCnaCS−1g}m,n∈Z are dual frames of B(G) with com-

mon generator CS−1g. �

Obviously, when the map B : L2(R) → H is unitary, we have C = (B∗)−1 = B

so that the above frames are precisely the same.

The following version of Example 3.8 is a specific situation of Theorem 4.6. If

B, C : L2(R) → H are invertible with C = (B∗)−1, then {EBmbTBnaCS−1g}m,n∈Z and

{ECmbTCnaCS−1g}m,n∈Z are respectively, Pseudo B-Gabor frame and Pseudo C-Gabor

frame on H with same generator CS−1g and same frame operator (BSB∗)−1.

Example 4.7. Define B : L2(R) → L2(R) by B(f) = (Mϕβ,γDα)(f) for all f ∈
L2(R), where Dα is the dilation unitary operator and Mϕβ,γ is the multiplication

operator on L2(R) as we have seen in Example 3.8.

Observe that

B∗ = D∗
α(Mϕβ,γ )

∗ = D 1
α
Mϕβ,γ

and B∗B = D 1
α
Mϕ|β|2,|γ|2

Dα.
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It can be easily verified that B∗B commutes with modulation Eb and translation

Ta. Further, B
∗B is positive and invertible. Hence B∗B is a Gabor frame operator

on L2(R). Also we see that,

BEmbB
−1f(t) = (BEmbD 1

α
Mϕ 1

β
, 1γ

)f(t) = e(2πimbt/α)f(t) = Emb
α
f(t),

BTnaB
−1f(t) = BTna(

√
| α |ϕ 1

β
, 1
γ
(αt)f(αt))

= ϕβ,γ(t)ϕ 1
β
, 1
γ
(t− na/α)f(t− na/α)

Taking C = (B∗)−1 and by simple computations, we obtain

CEmbC
−1f(t) = (B∗)−1EmbB

∗f(t) = e2πimbt/αf(t) = Emb
α
f(t),

CTnaC
−1f(t) = (B∗)−1TnaB

∗f(t) = ϕ 1
β
, 1
γ
(t)ϕβ,γ(t− na/α)f(t− na/α).

Thus BEmbB
−1 = CEmbC

−1, but BTnaB
−1 ̸= CTnaC

−1.

Hence EBmbT
B
na ̸= ECmbT

C
na and for a given Gabor frame {EmbTnag}m,n∈Z in L2(R)

with frame operator

S,C{EmbTnaS−1g}m,n∈Z = {ECmbTCnaCS−1g}m,n∈Z

and

{EBmbTBnaCS−1g}m,n∈Z
are different frames with same generator CS−1g and same frame operator (BSB∗)−1.

Images of Gabor frames under unitary transformations have received remarkable

research attention. Non-unitary approaches also are found to be significant in the

context of quantum field theory [17]. This leads to the study about Pseudo B-Gabor

like frames.
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