DOI QR코드

DOI QR Code

Artificial neural network approach for calculating mass attenuation coefficient of different glass systems

  • A. Benhadjira (Equipe Optoelectronique, LENREZA Laboratory, University of Kasdi Merbah) ;
  • M.I. Sayyed (Department of Physics, Faculty of Science, Isra University) ;
  • O. Bentouila (Equipe Optoelectronique, LENREZA Laboratory, University of Kasdi Merbah) ;
  • K.E. Aiadi (Equipe Optoelectronique, LENREZA Laboratory, University of Kasdi Merbah)
  • 투고 : 2023.07.30
  • 심사 : 2023.09.11
  • 발행 : 2024.01.25

초록

In this study, we propose an alternative approach using Artificial Neural Networks (ANN) for determining Mass Attenuation Coefficients (MAC) in various glass systems. This method takes into account the weights of glass compositions, density, and photon energy as input features. The ANN model was trained and tested on a dataset consisting of 650 data points and subsequently validated through a K-fold cross-validation procedure. Our findings demonstrate a high level of accuracy, with R2 values ranging from 0.90 to 0.99. Additionally, the model exhibits robust extrapolation capabilities with an R2 score of 0.87 for predicting MAC values in a new glass system. Furthermore, this approach significantly reduces the need for costly and time-consuming computations and experiments, making it a potential tool for selecting materials for effective radiation protection.

키워드

참고문헌

  1. M. Kamislioglu, An investigation into gamma radiation shielding parameters of the (Al: Si) and (Al+ Na): Si-doped international simple glasses (ISG) used in nuclear waste management, deploying Phy-X/PSD and SRIM software, J. Mater. Sci., Mater. Electron. 32 (2021) 12690-12704.  https://doi.org/10.1007/s10854-021-05904-8
  2. Ran Li, Yizhuo Gu, Gaolong Zhang, Zhongjia Yang, Min Li, Zuoguang Zhang, Radiation shielding property of structural polymer composite: Continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide, Compos. Sci. Technol. 143 (2017) 67-74.  https://doi.org/10.1016/j.compscitech.2017.03.002
  3. Nazlican Sahin, Merve Bozkurt, Yasar Karabul, Mehmet Kilic, Zeynep Guven Ozdemir, Low cost radiation shielding material for low energy radiation applications: Epoxy/Yahyali Stone composites, Prog. Nucl. Energy 135 (2021) 103703. 
  4. Turgay Korkut, Zeynep Itir Umac, Bunyamin Aygun, Abdulhalik Karabulut, Sinan Yapici, Remzi Sahin, Neutron equivalent dose rate measurements of gypsum-waste tire rubber layered structures, Int. J. Polymer Anal. Charact. 18 (6) (2013) 423-429.  https://doi.org/10.1080/1023666X.2013.814025
  5. M. Kamislioglu, Research on the effects of bismuth borate glass system on nuclear radiation shielding parameters, Results Phys. 22 (2021) 103844. 
  6. Rishu Prasad, Avinash R. Pai, S. Olutunde Oyadiji, Sabu Thomas, S.K.S. Parashar, Utilization of hazardous red mud in silicone rubber/MWCNT nanocomposites for high performance electromagnetic interference shielding, J. Clean. Prod. 377 (2022) 134290. 
  7. Tonguc Ozdemir, Seda Nur Yilmaz, Mixed radiation shielding via 3-layered polydimethylsiloxane rubber composite containing hexagonal boron nitride, boron (III) oxide, bismuth (III) oxide for each layer, Radiat. Phys. Chem. 152 (2018) 17-22.  https://doi.org/10.1016/j.radphyschem.2018.07.007
  8. T. Ozdemir, A. Gungor, I.K. Akbay, H. Uzun, Y. Babuccuoglu, Nano lead oxide and epdm composite for development of polymer based radiation shielding material: Gamma irradiation and attenuation tests, Radiat. Phys. Chem. 144 (2018) 248-255.  https://doi.org/10.1016/j.radphyschem.2017.08.021
  9. Amandeep Sharma, M.I. Sayyed, O. Agar, H.O. Tekin, Simulation of shielding parameters for TeO2-WO3-GeO2 glasses using FLUKA code, Results Phys. 13 (2019) 102199. 
  10. Shams A.M. Issa, Ashok Kumar, M.I. Sayyed, M.G. Dong, Y. Elmahroug, Mechanical and gamma-ray shielding properties of TeO2-ZnO-NiO glasses, Mater. Chem. Phys. 212 (2018) 12-20.  https://doi.org/10.1016/j.matchemphys.2018.01.058
  11. Seulgi Kim, Yunhee Ahn, Sung Ho Song, Dongju Lee, Tungsten nanoparticle anchoring on boron nitride nanosheet-based polymer nanocomposites for complex radiation shielding, Compos. Sci. Technol. 221 (2022) 109353. 
  12. S. Yonphan, W. Chaiphaksa, E. Kalkornsurapranee, A. Tuljittraporn, S. Kothan, S. Kaewjaeng, N. Intachai, N. Wongdamnern, C. Kedkaew, H.J. Kim, et al., Development of flexible radiation shielding materials from natural rubber/Sb2o3 composites, Radiat. Phys. Chem. 200 (2022) 110379. 
  13. Mengge Dong, Xiangxin Xue, He Yang, Zhefu Li, Highly cost-effective shielding composite made from vanadium slag and boron-rich slag and its properties, Radiat. Phys. Chem. 141 (2017) 239-244.  https://doi.org/10.1016/j.radphyschem.2017.07.023
  14. Mengge Dong, Xiangxin Xue, He Yang, Dong Liu, Chao Wang, Zhefu Li, A novel comprehensive utilization of vanadium slag: As gamma ray shielding material, J. Hazard. Mater. 318 (2016) 751-757.  https://doi.org/10.1016/j.jhazmat.2016.06.012
  15. Dalal A. Aloraini, M.Y. Hanfi, M.I. Sayyed, K.A. Naseer, Aljawhara H. Almuqrin, P. Tamayo, O.L. Tashlykov, K.A. Mahmoud, Design and Gamma-ray attenuation features of new concrete materials for low- and moderate-photons energy protection applications, Materials 15 (14) (2022) 4947. 
  16. Mayeen Uddin Khandaker, D.A. Bradley, Hamid Osman, M.I. Sayyed, A. Sulieman, M.R.I. Faruque, K.A. Naseer, Abubakr M. Idris, The significance of nuclear data in the production of radionuclides for theranostic/therapeutic applications, Radiat. Phys. Chem. 200 (2022) 110342. 
  17. S.A. Bassam, K.A. Naseer, Anagha J. Prakash, K.A. Mahmoud, C.S. Suchand-Sangeeth, M.I. Sayyed, Mohammed S. Alqahtani, E. El Sheikh, Mayeen Uddin Khandaker, Effect of tm2o3 addition on the physical, structural, elastic, and radiation-resisting attributes of tellurite-based glasses, Radiat. Phys. Chem. 209 (2023) 110988. 
  18. M.R. Ambika, N. Nagaiah, V. Harish, N.K. Lokanath, M.A. Sridhar, N.M. Renukappa, S.K. Suman, Preparation and characterisation of isophthalic-Bi2O3 polymer composite gamma radiation shields, Radiat. Phys. Chem. 130 (2017) 351-358.  https://doi.org/10.1016/j.radphyschem.2016.09.022
  19. Bunyamin Aygun, High alloyed new stainless steel shielding material for gamma and fast neutron radiation, Nucl. Eng. Technol. 52 (3) (2020) 647-653.  https://doi.org/10.1016/j.net.2019.08.017
  20. Bunyamin Aygun, Neutron and gamma radiation shielding Ni based new type super alloys development and production by Monte Carlo simulation technique, Radiat. Phys. Chem. 188 (2021) 109630. 
  21. Tianyu Zhang, Yang Li, Yan Yuan, Kai Cui, Wenjing Wei, Jinzhu Wu, Wei Qin, Xiaohong Wu, Spatially confined Bi2O3-Ti3C2Tx hybrids reinforced epoxy composites for gamma radiation shielding, Compos. Commun. 34 (2022) 101252. 
  22. M.I. Sayyed, Ashok Kumar, H.O. Tekin, Ramandeep Kaur, Mandeep Singh, O. Agar, Mayeen Uddin Khandaker, Evaluation of gamma-ray and neutron shielding features of heavy metals doped Bi2O3-BaO-Na2O-MgO-B2O3 glass systems, Prog. Nucl. Energy 118 (2020) 103118. 
  23. Fouad Ismail El-Agawany, Karem Abdel-Azeem Mahmoud, Hakan Akyildirim, ElSayed Yousef, Huseyin Ozan Tekin, Yasser Saad Rammah, Physical, neutron, and gamma-rays shielding parameters for Na2O-SiO2-PbO glasses, Emerg. Mater. Res. 10 (2) (2021) 227-237. 
  24. K.A. Mahmoud, F.I. El-Agwany, Y.S. Rammah, O.L. Tashlykov, Gamma ray shielding capacity and build up factors of CdO doped lithium borate glasses: theoretical and simulation study, J. Non-Crystalline Solids 541 (2020) 120110. 
  25. W. Cheewasukhanont, P. Limkitjaroenporn, S. Kothan, C. Kedkaew, J. Kaewkhao, The effect of particle size on radiation shielding properties for bismuth borosilicate glass, Radiat. Phys. Chem. 172 (2020) 108791. 
  26. S.A. Tijani, Yas Al-Hadeethi, Isa Sambo, F.A. Balogun, Shielding of beta and bremsstrahlung radiation with transparent Bi2O3-B2O3-TeO2 glasses in therapeutic nuclear medicine, J. Radiol. Prot. 38 (3) (2018) N44. 
  27. Sevim Bilici, Mirac Kamislioglu, Elif Ebru Altunsoy Guclu, A Monte Carlo simulation study on the evaluation of radiation protection properties of spectacle lens materials, Eur. Phys. J. Plus 138 (1) (2023) 80. 
  28. Kim Albertsson, et al., Machine learning in high energy physics community white paper, J. Phys. Conf. Ser. 1085 (2018) 022008. 
  29. Abderrahmane Benhadjira, Omar Bentouila, Kamal Eddine Aiadi, Mohammed Adem Bourenane, Judd-Ofelt parameters prediction of Er+3 and Nd+3 doped oxide glasses using machine learning models, Optik 285 (2023) 170946. 
  30. Daniel R. Cassar, GlassNet: a multitask deep neural network for predicting many glass properties, 2023, arXiv preprint arXiv:2303.15538.  https://doi.org/10.1016/j.ceramint.2023.08.281
  31. Qi Wang, Longfei Zhang, Inverse design of glass structure with deep graph neural networks, Nature Commun. 12 (2021). 
  32. Dongping Chang, Wencong Lu, Gang Wang, Designing bulk metallic glasses materials with higher reduced glass transition temperature via machine learning, Chemometr. Intell. Lab. Syst. 228 (2022) 104621. 
  33. Ashok Kumar, Anisha Jain, M.I. Sayyed, Farah Laariedh, K.A. Mahmoud, Jamel Nebhen, Mayeen Uddin Khandaker, M.R.I. Faruque, Tailoring bismuth borate glasses by incorporating PbO/GeO2 for protection against nuclear radiation, Sci. Rep. 11 (1) (2021). 
  34. Atif Mossad Ali, M.I. Sayyed, Ashok Kumar, M. Rashad, Ali M. Alshehri, Ramandeep Kaur, Optically transparent newly developed glass materials for gamma ray shielding applications, J. Non-Crystalline Solids 521 (2019) 119490. 
  35. Y. Al-Hadeethi, M.I. Sayyed, BaO-Li2O-B2O3 glass systems: Potential utilization in gamma radiation protection, Prog. Nucl. Energy 129 (2020) 103511. 
  36. O. Agar, M.I. Sayyed, H.O. Tekin, Kawa M. Kaky, S.O. Baki, I. Kityk, An investigation on shielding properties of BaO, MoO3 and P2O5 based glasses using MCNPX code, Results Phys. 12 (2019) 629-634.  https://doi.org/10.1016/j.rinp.2018.12.003
  37. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom-a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71 (3-4) (2004) 653-654.  https://doi.org/10.1016/j.radphyschem.2004.04.040
  38. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016, http://www.deeplearningbook.org. 
  39. Kurt Hornik, Maxwell Stinchcombe, Halbert White, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (5) (1989) 359-366.  https://doi.org/10.1016/0893-6080(89)90020-8
  40. Raul Rojas, The backpropagation algorithm, in: Neural Networks: A Systematic Introduction, Springer Berlin Heidelberg, Berlin, Heidelberg, 1996, pp. 149-182. 
  41. Diederik Kingma, Jimmy Ba, Adam: A method for stochastic optimization, Int. Conf. Learn. Represent. (2014). 
  42. Qifa Ke, Takeo Kanade, Robust L1 norm factorization in the presence of outliers and missing data by alternative convex programming, in: Proceedings / CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, 2005, pp. 739 - 746. 
  43. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (56) (2014) 1929-1958.