DOI QR코드

DOI QR Code

Searching for the viability of using thorium-based accident-tolerant fuel for VVER-1200

  • Mohamed Y.M. Mohsen (Nuclear Engineering Department, Military Technical College) ;
  • Mohamed A.E. Abdel-Rahman (Nuclear Engineering Department, Military Technical College) ;
  • Ahmed Omar (Nuclear Engineering Department, Military Technical College) ;
  • Nassar Alnassar (Department of Physics, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU)) ;
  • A. Abdelghafar Galahom (Higher Technological Institute)
  • 투고 : 2023.05.31
  • 심사 : 2023.09.14
  • 발행 : 2024.01.25

초록

This study explores the feasibility of employing (U, Th)-based accident tolerant fuels (ATFs), specifically (0.8UO2, 0.2ThO2), (0.8UN, 0.2ThN), and (0.8UC, 0.2ThC). The investigation assesses the overall performance of these proposed fuel materials in comparison to the conventional UO2, focusing on deep neutronic and thermal-hydraulic (Th) analyses. Neutronic analysis utilized the MCNPX code, while COMSOL Multiphysics was employed for thermal-hydraulic analysis. The primary objective of this research is to overcome the limitations associated with traditional UO2 fuel by exploring alternative fuel materials that offer advantages in terms of abundance and potential improvements in performance and safety. Given the limited abundance of UO2, long-term sustainable nuclear energy production faces challenges. From a neutronic standpoint, the U-Th based fuels demonstrated remarkable fuel cycle lengths, except (0.8UN, 0.2ThN), which exhibited the minimum fuel cycle length and, consequently, the lowest fuel burn-up. Regarding thermal-hydraulic performance, (0.8UN, 0.2ThN) exhibited outstanding performance with significant margins against fuel melting compared to the other materials. Overall, when considering the integrated performance, the most favourable results were obtained with the use of the (0.8UC, 0.2ThC) fuel configurations. This study contributes valuable insights into the potential benefits of (U, Th)-based ATFs as a promising avenue for enhanced nuclear fuel performance.

키워드

참고문헌

  1. W.N. Association, Nuclear Power in the World Today, 2021. Available: https://www.world-nuclear.org/information-library/current-and-future-generation/nuclear-power-in-the-world-today.aspx.
  2. The Fukushima Daiichi Accident. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2015..
  3. A.A. Galahom, Study of the possibility of using Europium and Pyrex alloy as burnable absorber in PWR, Ann. Nucl. Energy 110 (2017) 1127-1133.
  4. A. Abdelghafar Galahom, Searching for the optimum number of integral burnable absorber rods used in PWR assembly, Int. J. Nucl. Energy Sci. Technol. 13 (No. 2) (2019).
  5. Amr Ibrahim, Moustafa Aziz, S.A. El-Fiki, S.U. El-Kameesy, A.A. Galahom, The effect of homogenization on the neutronic parameters and transmutation of GFR-2400 fast reactor fuel assembly, Ann. Nucl. Energy 110 (2017) (2017) 215-221.
  6. A.A. Galahom, Simulate the effect of integral burnable absorber on the neutronic characteristics of a PWR assembly, Nuclear Energy Tech. 4 (4) (2018) 287-293.
  7. Mohamed Y.M. Mohsen, Mohamed A.E. Abdel-Rahman, Mohamed Saffaa Hassan, A. Abdelghafar Galahom, Searching for the most optimum burnable absorbers (BAs) for AP-1000 from the neutronic, thermal-hydraulic, and solid mechanics points of view, Nucl. Eng. Des. 391 (2022), 111728.
  8. Amr Ibrahim, Moustafa Aziz, A. Soad, El-Fiki, Ahmed Abdelghafar Galahom, Comparative analysis between homogeneous and heterogeneous models of gas cooled fast reactor core (GFR-2400), Kerntechnik 87 (4) (2022) 385-397.
  9. B. Mahanthesh, B.J. Gireesha, B.C. PrasannaKumara, N.S. Shashikumar, Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source, Nucl. Eng. Technol. 49 (8) (2017/12/01/2017) 1660-1668.
  10. Y.M. Mohamed, a Mohsen, A.E. Mohamed, a Abdel-Rahman, A. Abdelghafar Galahom, Integrated analysis of VVER-1000 fuel assembly fueled with accident tolerant fuel (ATF) materials, Ann. Nucl. Energy 159 (2021), 108330.
  11. A. Abdelghafar Galahom a, Ehab M. Aboelyazidb, S.A. El-Fikib, Moustafa Aziz, Searching for optimal accident tolerant fuel for the VVER-1200 reactor from the neutronic point of view, 2023, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45 (NO. 1) (2023) 1405-1423.
  12. Mohamed Y.M. Mohsen, Mohamed A.E. Abdel-Rahman, Mohamed Safaa Hassan, A. Abdelghafar Galahom, Investigating the possible advantage of using LM bonded gap instead of helium in Ap-1000 nuclear power reactor, Nucl. Eng. Des. 380 (2021), 111302.
  13. K.A. Terrani, Y. Yamamoto, Y.S. Kim, Development status of accident-tolerant fuel for LWRs, J. Nucl. Mater. 448 (1-3) (2014) 374-379.
  14. Mohamed Y.M. Mohsen, Mohamed A.E. Abdel-Rahman, A. Abdelghafar Galahom, Untraditional solution for enhancing the performance of U-20 % Zr metallic alloy as an ATF using liquid metal bonded gap, Kerntechnik 87 (6) (2022) 640-650.
  15. A. Abdelghafar Galahom, Mohamed A.E. Abdel-Rahman, Mohamed Y.M. Mohsen, A. Hakamy, Investigation of the possibility of using a uranium-zirconium metal alloy as a fuel for nuclear power plant AP-1000, Nucl. Eng. Des. 406 (2023), 112257.
  16. A.I. Elazaka, G.V. Tikhomirov, Ahmed Abdelghafar Galahom, Study the neutronic feasibility of using Zr as an energy regulator instead of traditional methods, Int. J. Energy Res. 45 (2021) 10012-10023.
  17. A.A. Galahom, Minimization of the fission product waste by using thorium based fuel instead of uranium dioxide, Nucl. Eng. Des. 314 (2017) (2017) 165-172.
  18. A.A. Galahom, I.I. Bashter, M. Aziz, Study the neutronic analysis and burnup for BWR fueled with hydride fuel using MCNPX code, Prog. Nucl. Energy 77 (2014) 65-71.
  19. U.E. Humphrey, M.U. Khandaker, Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: issues and prospects, Renew. Sustain. Energy Rev. 97 (2018/12/01/2018) 259-275.
  20. T.R. Govindan Kutty, J. Banerjee, K. Arun, Thermophysical properties of thoria-based fuels, in: D. Das, S.R. Bharadwaj (Eds.), Thoria-based Nuclear Fuels: Thermophysical and Thermodynamic Properties, Fabrication, Reprocessing, and Waste Management, Springer London, London, 2013, pp. 11-70.
  21. A.A. Galahom, Reducing the plutonium stockpile around the world using a new design of VVER-1200 assembly, Ann. Nucl. Energy 119 (2018) 279-286.
  22. A.A. Galahom, Improvement of the VVER-1200 fuel cycle by introducing thorium with different fissile material in blanket-seed assembly, Nucl. Sci. Eng. 193 (JUNE 2019) 638-651.
  23. A.A. Galahom, Investigate the possibility of burning weapon-grade plutonium using a concentric rods BS assembly of VVER-1200, Ann. Nucl. Energy 148 (2020), 107758.
  24. A.A. Galahom, I.I. Bashter, M. Aziz, Design of an MCNPX model to simulate the performance of BWRs using thorium as fuel and its validation with HELIOS code, Ann. Nucl. Energy 77 (2015) 393-401.
  25. A. Ibrahim, Moustafa Aziz, S.U. El-Kameesy, S.A. El-Fiki, A.A. Galahom, Analysis of thorium fuel feasibility in large scale gas cooled fast reactor using MCNPX code, Ann. Nucl. Energy 111 (2018) 460-467.
  26. A.A. Galahom, Iman Mohamad Sharaf, Finding a suitable fuel type for the disposal of the accumulated minor actinides in the spent nuclear fuel in PWR, Prog. Nucl. Energy 136 (2021), 103749.
  27. A.A. Galahom, A.I. Elazaka b, c, G.V. Tikhomirov, Searching for managing the reactivity and increasing the fuel cycle life in the PWR by an untraditional method, Nucl. Eng. Des. 383 (2021), 111433.
  28. A.A. Galahom, Examine the possibility of increasing the plutonium incineration rate in the current operating pressurized water reactor, Prog. Nucl. Energy 142 (2021), 104026.
  29. A.I. Elazaka, , Georgy Valentinovich Tikhomirov, Vladimir Igorevich Savander, Mohamed A.E. Abdel-Rahman, A. Abdelghafar Galahom, Investigation of a new approach for regulating the reactivity and achieving economic feasibility using thorium in a blanket-seed assembly of pressurized water reactors, Int. J. Energy Res. 46 (2022) 6112-6125.
  30. A.A. Galahom, Amr Ibrahim, Integrated analysis to investigate the viability of using Thorium-based fuel instead of traditional fuel in CANDU reactor, Nucl. Eng. Des. 398 (2022), 111969.
  31. M.Y.M. Mohsen, M.A.E. Abdel-Rahman, A.A. Galahom, Ensuring the possibility of using thorium as a fuel in a pressurized water reactor (PWR), Nucl. Sci. Tech. 32 (12) (2021/12/10 2021) 137.
  32. A.A. Galahom, M.Y.M. Mohsen, N. Amrani, Explore the possible advantages of using thorium-based fuel in a pressurized water reactor (PWR) Part 1: neutronic analysis, Nucl. Eng. Technol. 54 (1) (2022/01/01/2022) 1-10.
  33. COMSOL-Multiphysics, COMSOL documentation, Available: https://doc.comsol.com/5.6/docserver/#!/com.comsol.help.comsol/helpdesk/helpdesk.html, 2020.
  34. S. Mohamed Y, M Mohsen, Abdelfattah Y, Mohamed A. E. Abdel-Rahman "Thermal-hydraulic and solid mechanics safety analysis for VVER-1000 reactor using analytical and CFD approaches," Prog. Nucl. Energy, vol. 130, p. 103568..
  35. S. Mohamed, Y. M Mohsen, Y. Abdelfattah, Mohamed A.E. Abdel-Rahman, Thermal-hydraulic and solid mechanics safety analysis for VVER-1000 reactor using analytical and CFD approaches, Prog. Nucl. Energy 130 (2020/12/01/2020), 103568.
  36. M.A.E.A.-R. Mohamed, Y.M. Mohsen, A. Abdelghafar Galahom, Integrated analysis of VVER-1000 fuel assembly fueled with accident tolerant fuel (ATF) materials, Ann. Nucl. Energy 159 (2021/09/01/2021), 108330.
  37. M.K. Neil Todreas, Nuclear Systems I Thermal Hydraulic Fundamentals, Hemisphere Publishing Corporation, 1990.
  38. IAEA, Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data, INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2009.
  39. M. Cooper, S. Murphy, P. Fossati, M. Rushton, R. Grimes, Thermophysical and anion diffusion properties of (Ux,Th1-x)O2, Proc. Royal Soci. A 470 (2014), 20140427.
  40. C. Galvin, M. Cooper, M. Rushton, R. Grimes, Thermophysical properties and oxygen transport in (Thx,Pu1- x)O2, Sci. Rep. 6 (2016) 10-31.
  41. H. Muta, Y. Murakami, M. Uno, K. Kurosaki, S. Yamanaka, Thermophysical properties of Th 1- x U x O 2 pellets prepared by spark plasma sintering technique, J. Nucl. Sci. Technol. 50 (2013) 181-187.
  42. M.J. Rahman, B. Szpunar, J. Szpunar, Comparison of thermomechanical properties of (Ux,Th1-x)O2, (Ux,Pu1-x)O2 and (Pux,Th1-x)O2 systems, J. Nucl. Mater. 513 (2018), 10/01.
  43. J. Harness, J. Matthews, N. Morton, The specific heat of some uranium and thorium carbides between 1.8◦ K and 4.2◦ K, Br. J. Appl. Phys. 15 (963) (2002) 11-20.
  44. J.K. Fink, M.G. Chasanov, L. Leibowitz, Thermophysical Properties of Thorium and Uranium Systems for Use in Reactor Safety Analysis, 1977, 06/01.
  45. S.S. Parker, S. Newman, A.J. Fallgren, J.T. White, Thermophysical properties of mixtures of thorium and uranium nitride, J. Occup. Med. 73 (11) (2021/11/01 2021) 3564-3575.
  46. W.~M. Rohsenow, J.~P. Hartnett, Y. Cho, Y. ~I, Handbook of Heat Transfer, 1997.
  47. M.J. Fagan, Finite Element Analysis: Theory and Practice, Longman Scientific & Technical, 1992.
  48. T.J. Chung, Computational Fluid Dynamics, Cambridge University Press, Cambridge, 2002.
  49. P.I. Muiruri, O.S. Motsamai, R. Ndeda, A comparative study of RANS-based turbulence models for an upscale wind turbine blade, SN Appl. Sci. 1 (3) (2019/02/18 2019) 237.
  50. M.Y.M. Mohsen, M.A.E. Abdel-Rahman, Neutronics and Both Analytical and Numerical Solutions for the Rod Centered Subchannel Thermal-Hydraulic Model % J Kerntechnik, 86, 2021, pp. 312-320, 4.
  51. M.K. Neil Todreas, Nuclear Systems I Thermal Hydraulic Fundamentals, Hemisphere Publishing Corporation, 1990.
  52. T.L.D. Bergman, D.P. Incropera, F. avine, S. A, Fundamentals of Heat and Mass Transfer, 2011.
  53. C.O.T. Galvin, P.A. Burr, M.W.D. Cooper, P.C.M. Fossati, R.W. Grimes, Using molecular dynamics to predict the solidus and liquidus of mixed oxides (Th,U)O2, (Th,Pu)O2 and (Pu,U)O2, J. Nucl. Mater. 534 (2020/06/01/2020), 152127.