DOI QR코드

DOI QR Code

In-pile tritium release behavior and the post-irradiation experiments of Li4SiO4 fabricated by melting process

  • Linjie Zhao (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Mao Yang (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Chengjian Xiao (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Yu Gong (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Guangming Ran (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Xiaojun Chen (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Jiamao Li (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Lei Yue (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Chao Chen (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Jingwei Hou (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Heyi Wang (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Xinggui Long (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Shuming Peng (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics)
  • 투고 : 2023.03.22
  • 심사 : 2023.09.11
  • 발행 : 2024.01.25

초록

Understanding the tritium release and retention behavior of candidate tritium breeder materials is crucial for breeder blanket design. Recently, a melt spraying process was developed to prepare Li4SiO4 pebbles, which were subsequently subjected to the in-pile tritium production and extraction platform in China Mianyang Research Reactor (CMRR) to investigate their in-situ tritium release behavior and irradiation performance. The results demonstrate that HT is the main tritium release form, and adding hydrogen to the purge gas reduces tritium retention while increasing the HT percent in the purge gas. Post-irradiation experiments reveal that the irradiated pebbles darken in color and their grains swell, but the mechanical properties remain largely unchanged. It is concluded that the tritium residence time of Li4SiO4 made by melt spraying method at 467 ℃ is approximately 23.34 h. High-density Li4SiO4 pebbles exhibit tritium release at relatively low temperatures (<600 ℃) that is mainly controlled by bulk diffusion. The diffusion coefficient at 525 ℃ and 550 ℃ is 1.19 × 10-11 cm2/s and 5.34 × 10-11 cm2/s, respectively, with corresponding tritium residence times of 21.3 hours and 4.7 hours.

키워드

과제정보

This work is supported by the National Key Research and Development Project of China (No.2017YFE0301601), and the National Magnetic Confinement Fusion Science Program (No.2014GB111000).

참고문헌

  1. X. Wang, et al., Current progress of tritium fuel cycle technology for CFETR, J. Fusion Energ. 38 (1) (2019) 125-137. https://doi.org/10.1007/s10894-018-0158-1
  2. M. Abdou, et al., Physics and technology considerations for the deuterium-tritium fuel cycle and conditions for tritium fuel self sufficiency, Nucl. Fusion 61 (1) (2020), 13001.
  3. M.M.W. Peeters, et al., In-pile tritium release behaviour of lithiummetatitanate produced by extrusion-spheroidisation-sintering process in EXOTIC-9/1 in the high flux reactor, Petten, Fusion, Eng. Des. 82 (15-24) (2007) 2318-2325. https://doi.org/10.1016/j.fusengdes.2007.05.036
  4. F. Scaffidi-Argentina, Tritium and helium release from neutron irradiated beryllium pebbles from the EXOTIC-8 irradiation, Fusion Eng. Des. 58-59 (4) (2001) 641-645. https://doi.org/10.1016/S0920-3796(01)00510-5
  5. J.G. van der Laan, et al., EXOTIC-7: irradiation of ceramic breeder materials to high lithium burnup, J. Nucl. Mater. 233-237 (2) (1996) 1446-1451. https://doi.org/10.1016/S0022-3115(96)00132-8
  6. H. Kwast, et al., Tritium release from the various solid breeder materials irradiated in EXOTIC experiments 1, 2 and 3, J. Nucl. Mater. 155-157 (1) (1988) 558-562. https://doi.org/10.1016/0022-3115(88)90310-8
  7. H. Kwast, et al., EXOTIC, an experimental programme on the development of ceramic tritium breeding materials, J. Nucl. Mater. 133-134 (1985) 246-250. https://doi.org/10.1016/0022-3115(85)90144-8
  8. W. Krug, et al., Inpile tritium release from ceramic breeder materials in TRIDEX experiments 1-6, Fusion Eng. Des. 17 (1991) 65-71. https://doi.org/10.1016/0920-3796(91)90038-R
  9. T. Kurasawa, et al., In-situ tritium recovery from Li2O irradiated in fast neutron flux - BEATRIX-II initial results, Fusion Technol. 19 (3P2A) (1991) 931-937. https://doi.org/10.13182/FST91-A29463
  10. T. Kurasawa, et al., The time dependence of in-situ tritium release from lithium oxide and lithium aluminate (VOM-22H experiment), J. Nucl. Mater. 141-143 (1986) 265-270. https://doi.org/10.1016/S0022-3115(86)80048-4
  11. R. Li, et al., An in-pile experimental loop for the irradiation of tritium breeding ceramics in China Mianyang research reactor (CMRR), Fusion Eng. Des. 164 (1) (2021), 112192.
  12. S.H. Hong, et al., Neutronics performance analysis on neutron consumption in a Fusion-Fission Hybrid System for tritium breeding, Ann. Nucl. Energy 125 (2019) 201-211. https://doi.org/10.1016/j.anucene.2018.10.042
  13. C.E. Johnson, et al., Ceramic breeder materials, J. Nucl. Mater. 155-157 (1988) 188-201. https://doi.org/10.1016/0022-3115(88)90240-1
  14. E. Roth, et al., Prospects of ceramic tritium breeder materials, Fusion Eng. Des. 11 (1-2) (1989) 219-229. https://doi.org/10.1016/0920-3796(89)90020-3
  15. C.E. Johnson, Research and development status of ceramic breeder materials, J. Nucl. Mater. 179-181 (1991) 42-46. https://doi.org/10.1016/0022-3115(91)90012-V
  16. C.E. Johnson, et al., Fabrication, properties, and tritium recovery from solid breeder materials, Fusion Eng. Des. 16 (1991) 127-139. https://doi.org/10.1016/0920-3796(91)90188-V
  17. J.G. van der Laan, et al., Ceramic breeder materials, in: R.J.M. Konings (Ed.), Comprehensive Nuclear Materials, Elsevier Science, Netherlands, 2012, pp. 463-510.
  18. K.M. Feng, et al., Current progress of Chinese HCCB TBM program, Fusion Eng. Des. 109 (2016) 729-735.
  19. Y. Wan, et al., Overview of the present progress and activities on the CFETR, Nucl. Fusion 57 (10) (2017), 102009.
  20. R. Knitter, et al., Recent developments of solid breeder fabrication, J. Nucl. Mater. 442 (1-3) (2013) S420-S424. https://doi.org/10.1016/j.jnucmat.2013.02.060
  21. R. Knitter, et al., Reduction of impurities and activation of lithium orthosilicate breeder materials, J. Nucl. Mater. 386-388 (2009) 1071-1073. https://doi.org/10.1016/j.jnucmat.2008.12.284
  22. R. Knitter, B. Lobbecke, Reprocessing of lithium orthosilicate breeder material by remelting, J. Nucl. Mater. 361 (1) (2007) 104-111. https://doi.org/10.1016/j.jnucmat.2006.11.005
  23. H. Vollenkle, et al., Die kristallstruktur von Li4SiO4, Monatsh.Chem. 99 (4) (1968) 1360-1371. https://doi.org/10.1007/BF00902680
  24. Z. Chen, et al., Improvement of ionization chamber for tritium measurements in inpile tritium extraction experiments, Fusion Eng. Des. 147 (1) (2019), 111222.
  25. L. Zhao, et al., Tritium release in Li4SiO4 and Li4.2Si0.8Al0.2O4 ceramics, J. Nucl. Mater. 482 (2016) 42-46. https://doi.org/10.1016/j.jnucmat.2016.10.009
  26. K. Tsuchiya, et al., In-situ tritium release behavior from Li2TiO3 pebble-bed, Fusion Eng. Des. 58-59 (2001) 679-682. https://doi.org/10.1016/S0920-3796(01)00527-0
  27. M. Nishikawa, et al., Chemical form of tritium released from solid breeder materials, J. Nucl. Mater. 325 (2-3) (2004) 87-93. https://doi.org/10.1016/j.jnucmat.2003.11.001
  28. T. Kinjyo, M. Nishikawa, Tritium release behavior from Li4SiO4, Fusion Sci. Technol. 46 (4) (2004) 561-570. https://doi.org/10.13182/FST04-A591
  29. Y. Kawamura, et al., Formation of water in lithium ceramics bed at hydrogen addition to purge gas, J. Nucl. Mater. 230 (3) (1996) 287-294. https://doi.org/10.1016/0022-3115(96)00168-7
  30. A. Abramenkovs, et al., Basic study of influence of radiation defects on tritium release processes from lithium silicates, J. Nucl. Mater. 248 (1997) 116-120. https://doi.org/10.1016/S0022-3115(97)00206-7
  31. H. Kwast, et al., EXOTIC: Development of Ceramic Tritium Breeding Materials for Fusion Reactor Blankets. The Behaviour of Tritium in: Lithium Aluminate, Lithium Oxide, Lithium Silicates, Lithium Zirconates, Netherlands Energy Research Fooundation ECN, 1995.
  32. M. Nishikawa, et al., Release behavior of bred tritium from LiAlO2, J. Nucl. Mater. 335 (1) (2004) 70-76. https://doi.org/10.1016/j.jnucmat.2004.07.032
  33. J.M. Heuser, et al., The HICU PIE results of EU ceramic breeder pebbles: tritium release properties, J. Nucl. Mater. 531 (1) (2020), 152024.
  34. K. Munakata, et al., Tritium release from lithium silicate pebbles produced from lithium hydroxide, Fusion Eng. Des. 83 (7-9) (2008) 1317-1320. https://doi.org/10.1016/j.fusengdes.2008.05.039