DOI QR코드

DOI QR Code

Comparative Study of Exposure Assessment of Dust in Building Materials Enterprises Using ART and Monte Carlo

  • Wei Jiang (China University of Mining & Technology (Beijing), School of Emergency Management and Safety Engineering) ;
  • Zonghao Wu (Shanxi Kunming Tobacco Co.) ;
  • Mengqi Zhang (China University of Mining & Technology (Beijing), School of Emergency Management and Safety Engineering) ;
  • Haoguang Zhang (China University of Mining & Technology (Beijing), School of Emergency Management and Safety Engineering)
  • Received : 2023.07.17
  • Accepted : 2023.12.17
  • Published : 2024.03.30

Abstract

Background: Dust generated during the processing of building materials enterprises can pose a serious health risk. The study aimed to compare and analyze the results of ART and the Monte Carlo model for the dust exposure assessment in building materials enterprises, to derive the application scope of the two models. Methods: First, ART and the Monte Carlo model were used to assess the exposure to dust in each of the 15 building materials enterprises. Then, a comparative analysis of the exposure assessment results was conducted. Finally, the model factors were analyzed using correlation analysis and the scope of application of the models was determined. Results: The results show that ART is mainly influenced by four factors, namely, localized controls, segregation, dispersion, surface contamination, and fugitive emissions, and applies to scenarios where the workplace information of the building materials enterprises is specific and the average dust concentration is greater than or equal to 1.5 mg/m3. The Monte Carlo model is mainly influenced by the dust concentration in the workplace of building materials enterprises and is suitable for scenarios where the dust concentration in the workplace of the building materials enterprises is relatively uniform and the average dust concentration is less than or equal to 6mg/m3. Conclusion: ART is most accurate when workplace information is specific and average dust concentration is > 1.5 mg/m3; whereas, The Monte Carlo model is the best when dust concentration is homogeneous and average dust concentration is < 6 mg/m3.

Keywords

Acknowledgement

The authors gratefully appreciate the financial support from the Fundamental Research Funds for the Central Universities (project number: 2022SKAQ01), the Innovation Training Program for College Students at China University of Mining and Technology (Beijing) (202312018) and the Special Fund for Basic Research Expenses of Central Universities.

References

  1. Farhadovna KG, Sadikovna BG, Rakhimovna MT. Assessment of the impact of industrial enterprises on the environment and the introduction of new types of equipment for dust and gas cleaning. J Posit Sch Psychol 2022;6(1s):1-7. 
  2. Meskhi BC, Evtushenko AI, Sergina NM, Azarov VN. Research of abrasive properties separate dust to ensure the reliability of dusting systems in the production of building materials. IOP Conf Ser Mater Sci Eng 2021;1083(1):012091. 
  3. Meskhi B, Evtushenko A, Azarov V, Zhukova N. Comprehensive assessment of the dust environment at the construction industry enterprises. E3S Web Conf 2021;281:09024. 
  4. Omelchenko EV, Trushkova EA, Sidelnikov MV, Pushenko SL, Staseva EV. Algorithm research exposure dust emissions enterprises of building production on the environment. IOP Conf Ser Earth Environ Sci 2017;50(1):012018. 
  5. Ministry of Environmental Protection. Technical guideline for population exposure assessment of environmental polutant (in Chinese); 2017. 
  6. Li YF, Su SZ, Li L. Occupational health risk analysis and nursing measures of dust-exposed work post in cemented carbide manufacturers. Cemented Carbides 2021;38(4):279-85. 
  7. Niu Y, Zhang L, Liu K, Yu B, Zhang RP, Han L, et al. Occupational health risk assessment of dust in cement production enterprises. Prev Med 2021;33(6):558-62. 
  8. Shi T, Wang YW, Wang SY, Yu B, Zhang RP, Han L, Xie LZ, Wu P, Lin Y. Application of four risk assessment models in key industries of occupational dust exposure. Chin J Public Health Eng 2021;20(4):550-554+558. 
  9. Creely KS, Tickner J, Soutar AJ, Hughson GW, Pryde DE, Warren ND, Rae R, Money C, Phillips A, Cherrie JW. Evaluation and further development of EASE model 2.0. Ann Occup Hyg 2005;49(2):135-45. 
  10. Kupczewska-Dobecka M, Czerczak S, Jakubowski M. Evaluation of the TRA ECETOC model for inhalation workplace exposure to different organic solvents for selected process categories. Int J Occup Med Environ Health 2011;24(2):208-17.  https://doi.org/10.2478/s13382-011-0021-3
  11. Schinkel J, Fransman W, McDonnell PE, Entink RK, Tielemans E, Kromhout H. Reliability of the advanced REACH tool (ART). Ann Occup Hyg 2014;58(4):450-68. 
  12. Tielemans Erik, van Tongeren Martie, Warren Nick, Fransman Wouter, Schinkel Jody, Ritchie Peter, Tischer Martin, Schneider Thomas, Kromhout Hans, Cherrie John. Development of an advanced exposure assessment tool for REACH. Joop J Van Hemmen 2008;180:75-6.  https://doi.org/10.1016/j.toxlet.2008.06.592
  13. Tischer M, Lamb J, Hesse S, Van Tongeren M. Evaluation of tier one exposure assessment models (ETEAM): project overview and methods. Ann Work Exposures Health 2017;61(8):911-20.  https://doi.org/10.1093/annweh/wxx066
  14. McNally K, Warren N, Fransman W, Entink RK, Schinkel J, Van tongeren M, Cherrie JW, Kromhout H, Schneider T, Tielemans E. Advanced REACH Tool: a Bayesian model for occupational exposure assessment. Ann Occup Hyg 2014;58(5):551-65. 
  15. Goede HA, McNally K, Gorce JP, Marquart H, Warren ND, Fransman W, Tischer M, Schinkel J. Dermal advanced REACH tool (dART)-Development of a dermal exposure model for low-volatile liquids. Ann Work Expo Health 2019;63(6):624-36.  https://doi.org/10.1093/annweh/wxy106
  16. Sailabaht A, Wang F, Cherrie J. Extension of the advanced REACH tool (ART) to include welding fume exposure. Int J Environ Res Public Health 2018;15(10):1-16.  https://doi.org/10.3390/ijerph15102199
  17. Gonzalez AG, Herrador MA, Asuero AG. Uncertainty evaluation from Monte-Carlo simulations by using Crystal-Ball software. Accredit Qual Assur 2005;10(6):324. 324. 
  18. Poulter SR. Monte Carlo simulation in environmental risk assessment-science, policy and legal issues. Risk 1998;9(7):7-26. 
  19. Cummins E, Butler F, Gormley R, Brunton N. A Monte Carlo risk assessment model for acrylamide formation in French fries. Risk Anal 2010;29(10):1410-26.  https://doi.org/10.1111/j.1539-6924.2009.01272.x
  20. Pet-Armacost JJ, Sepulveda J, Sakude M. Monte Carlo sensitivity analysis of unknown parameters in hazardous materials transportation risk assessment. Risk Anal 2010;19(6):1173-84.  https://doi.org/10.1111/j.1539-6924.1999.tb01136.x
  21. Schinkel J, Warren N, Fransman W, Van tongeren M, McDonnell P, Voogd E, Cherrie JW, Tischer M, Kromhout H, Tielemans E. Advanced REACH Tool (ART): calibration of the mechanistic mode. J Environ Monit 2011;13(5):1374-82.  https://doi.org/10.1039/c1em00007a
  22. Wang L, Huang DY, Liu M, Wang Y. Application of Monte-Carlo simulation method in cancer risk assessment for benzene exposure. J Saf Environ 2011;11(5):231-5. 
  23. Wang JR, Zhao B. Research on comprehensive index of excess standard rate of dust's concentration of cement plant. J Liaoning Tech Univ (Natural Science) 2006;24(1):4-6. 
  24. Tsai PJ, Shieh HY, Lee WJ, Lai SO. Health-risk assessment for workers exposed to polycyclic aromatic hydrocarbons (PAHs) in a carbon black manufacturing industry. Sci Total Environ 2001;278(1-3):1137-50.  https://doi.org/10.1016/S0048-9697(01)00643-X
  25. Duan XL. Highlights of the Chinese exposure factors Handbook (Adults). Beijing: China Environmental Science Press; 2013. 
  26. Wang ZS, Duan XL, Liu P, Nie J, Huang N, Zhang JL. Human exposure factors of Chinese people in environmental health risk assessment. Res Environ Sci 2009;22(10):1164-70. 
  27. Hou J, Qu YH, Ning DL, Wang H. Impact of human exposure factors on health risk assessment for benzene contaminated site. Environ Sci Technol 2014;37(11):191-195+200. 
  28. Tong RP, Cheng MZ, Meng XY. Health damage assessment of automobile foundry dust based on Monte Carlo simulation method. Ind Saf Environ Prot 2018;44(7):54-8. 
  29. Schinkel J, Ritchie P, Goede H, Fransman W, Tongeren M, Cherrie JW, Tielemans E, Kromhout H, Warren N. The Advanced REACH Tool (ART): incorporation of an exposure measurement database. Ann Occup Hyg 2013;57(6):717-27. 
  30. Weaver B, Wuensch KL. SPSS and SAS programs for comparing Pearson correlations and OLS regression coefficients. Behav Res Methods 2013;45(3):880-95.  https://doi.org/10.3758/s13428-012-0289-7
  31. Donnell PM, Schinkel JM, Coggins MA, Fransman W, Kromhout H, Cherrie JW, Tielemans EL. Validation of the inhalable dust algorithm of the Advanced REACH Tool using a dataset from the pharmaceutical industry. J Environ Monit 2011;13(6):1597-606.  https://doi.org/10.1039/c1em10189g
  32. Lee S, Lee K, Kim H. Comparison of quantitative exposure models for occupational exposure to organic solvents in Korea. Ann Work Expo Health 2018;63:197-217.  https://doi.org/10.1093/annweh/wxy087
  33. Riedmann RA, Gasic B, Vernez D. Sensitivity analysis, dominant factors, and robustness of the ECETOC TRA v3, stoffenmanager 4.5, and ART 1.5 occupational exposure models. Risk Anal 2015;35:211-25. https://doi.org/10.1111/risa.12286