DOI QR코드

DOI QR Code

Recent changes in the phytoplankton community of Soda Lake Chitu, Ethiopia, in response to some environmental factors

  • Demtew Etisa (Microbial Biodiversity Directorate, Ethiopian Biodiversity Institute) ;
  • Yiglet Mebrat (Microbial Biodiversity Directorate, Ethiopian Biodiversity Institute)
  • Received : 2023.08.17
  • Accepted : 2023.10.30
  • Published : 2024.01.30

Abstract

While scientific information on the spatial variation of soda lake Microalgae is important to limnological studies, little information was reported from the Ethiopian Rift Valley Lake, Lake Chitu. This study aimed to understand the spatial distribution of the dominant Microalgae taxa in Lake Chitu, Ethiopia. The collection of samples and in situ measurements of some physico-chemical parameters were recorded at three sites for one cycle in November 2021. Fourteen species or genera of Microalgae were identified. Among those, Bacillariophyta were the most important with regard to species abundance and the rarest in species richness. Cyanophyta were the second-most important group in terms of species richness and rarity. Comparatively, all microalgae taxa were rare at both the anthropogenic areas (AA) and the flooding area (FA), which could be mainly due to intensive human and animal intervention and associated with extreme turbidity. Among Cyanophyta, Chroococcus minutus, Microcystis aeruginosa, and Spirulina platensis/fusiformis were predominant at both AA and FA, revealing their adaptation to less clear water and pollution. But S. platensis/fusiformis attained the highest abundance at the FA, indicating their preference for water in a highly nutrient-enriched area. We concluded that the spatial variation of microalgae diversity in relation to water quality parameters has implications for the importance of microalgae as a baseline indicator of water quality assessment tools in lakes.

Keywords

References

  1. Abate B, Woldesenbet A, Fitamo D. Water quality assessment of Lake Hawassa for multiple designated water uses. Water Util J. 2015;9:47-60.
  2. American Public Health Association [APHA]. Standard methods for the examination of water and wastewater. 20th ed. Washington, DC: American Water Works Association (AWWA); 1999.
  3. American Public Health Association [APHA]. Standard methods for the examination of water and waste water. 22nd ed. New York, NY: American Public Health Association; 2012.
  4. B.C. Ministry of Environment and Climate Change Strategy. Mercury water quality guidelines (reformatted from: British Columbia Ministry of Environments and Parks, 1989. Water quality criteria for mercury). Victoria, BC: Ministry of Environment and Climate Change Strategy; 2021. Report No.: WQG-13.
  5. Ballot A, Krienitz L, Kotut K, Wiegand C, Metcalf JS, Codd GA, et al. Cyanobacteria and cyanobacterial toxins in three alkaline Rift Valley Lakes of Kenya-Lakes Bogoria, Nakuru and Elmenteita. J Plankton Res. 2004;26:925-35. https://doi.org/10.1093/plankt/fbh084
  6. Bellinger EG, Sigee DC. Freshwater algae: identification and use as bioindicators. Chichester: John Wiley & Sons; 2010.
  7. Etisa D, Nega R, Lule W. Seasonal variation of microalgae diversity in Lake Abaya, Ethiopia. Int J Oceanogr Aquac. 2018;2:000150.
  8. Fekadu A, Chanie S. A seasonal study on phytoplankton diversity and dynamics of Lake Chamo, Ethiopia. Aquat Living Resour. 2017;30:40.
  9. Fenta AD, Kidanemariam AA. Assessment of cyanobacterial blooms associated with water quality status of Lake Chamo, South Ethiopia. J Environ Anal Toxicol. 2016;6:1-6.
  10. Gasse F. East African diatoms: taxonomy and ecological distributions. Stuttgart: J. Cramer; 1986.
  11. Getenet M, Garcia-Ruiz JM, Otalora F, Emmerling F, Al-Sabbagh D, Verdugo-Escamilla C. A comprehensive methodology for monitoring evaporitic mineral precipitation and hydrochemical evolution of saline lakes: the case of Lake Magadi soda brine (East African Rift Valley, Kenya). Cryst Growth Des. 2022;22:2307-17. https://doi.org/10.1021/acs.cgd.1c01391
  12. Getenet M, Otalora F, Emmerling F, Al-Sabbagh D, Garcia-Ruiz JM. Mineral precipitation and hydrochemical evolution through evaporitic processes in soda brine (East African Rift Valley). Chem Geol. 2023;616:121222.
  13. Grant WD. Alkaline environments and biodiversity. In: Gerday EC, Glansdorff N, editors. Extremophiles. Oxford: UNESCO; 2006.
  14. Huib H, Herco J. Ecosystems for water, food and economic development in the Ethiopian Central Rift Valley (BO-10-006-22): report of inception mission to Ethiopia and workplan 2006. Wageningen: Plant Research International; 2006.
  15. Idowu EO, Ugwumba AAA. Physical, chemical and benthic faunal characteristics of a Southern Nigeria Reservoir. Zool. 2005;3:15-25.
  16. Jones BE, Grant WD, Duckworth AW, Owenson GG. Microbial diversity of soda lakes. Extremophiles. 1998;2:191-200. https://doi.org/10.1007/s007920050060
  17. Kaggwa MN, Gruber M, Oduor SO, Schagerl M. A detailed time series assessment of the diet of lesser flamingos: further explanation for their itinerant behaviour. Hydrobiologia. 2013;710:83-93. https://doi.org/10.1007/s10750-012-1105-1
  18. Kebede E, Mariam ZG, Ahlgren I. The Ethiopian Rift Valley Lakes: chemical characteristics of a salinity-alkalinity series. Hydrobiologia. 1994;288:1-12. https://doi.org/10.1007/BF00006801
  19. Komarek J, Kling H. Variation in six planktonic Cyanophyte genera in Lake Victoria (East Africa). Algol Stud. 1991:21-45.
  20. Komarek J, Kling H, Komarkova J. 4 - Filamentous cyanobacteria. In: Wehr JD, Sheath RG, editors. Freshwater algae of North America: ecology and classification. San Diego, MA: Academic Press; 2003. p. 117-96.
  21. Krienitz L, Kotut K. Fluctuating algal food populations and the occurrence of lesser flamingos (Phoeniconaias minor) in three Kenyan Rift Valley Lakes. J Phycol. 2010;46:1088-96. https://doi.org/10.1111/j.1529-8817.2010.00915.x
  22. Kumssa T, Bekele A. Phytoplankton composition and physico-chemical parameters study in water bodies of Abijata-Shalla Lakes National Park (ASLNP), Ethiopia. Greener J Biol Sci. 2014;4:069-76. https://doi.org/10.15580/GJBS.2014.2.1210131023
  23. Lameck AS, Skutai J, Boros E. Review of chemical properties of inland soda and saline waters in East Africa (rift valley region). J Hydrol Reg Stud. 2023;46:101323.
  24. Legesse D, Gasse F, Radakovitch O, Vallet-Coulomb C, Bonnefille R, Verschuren D, et al. Environmental changes in a tropical lake (Lake Abiyata, Ethiopia) during recent centuries. Palaeogeogr Palaeoclimatol Palaeoecol. 2002;187:233-58. https://doi.org/10.1016/S0031-0182(02)00479-0
  25. Luo W, Kotut K, Krienitz L. Hidden diversity of eukaryotic plankton in the soda lake Nakuru, Kenya, during a phase of low salinity revealed by a SSU rRNA gene clone library. Hydrobiologia. 2013;702:95-103. https://doi.org/10.1007/s10750-012-1310-y
  26. Ogato T, Kifle D. Morphological variability of Arthrospira (Spirulina) fusiformis (Cyanophyta) in relation to environmental variables in the tropical soda lake Chitu, Ethiopia. Hydrobiologia. 2014;738:21-33. https://doi.org/10.1007/s10750-014-1912-7
  27. Ogato T, Kifle D. Phytoplankton composition and biomass in tropical soda Lake Shala: seasonal changes in response to environmental drivers. Lakes Reserv Res Manag. 2017;22:168-78. https://doi.org/10.1111/lre.12169
  28. Ogato T, Kifle D, Fetahi T, Sitotaw B. Evaluation of growth and biomass production of Arthrospira (Spirulina) fusiformis in laboratory cultures using waters from the Ethiopian soda lakes Chitu and Shala. J Appl Phycol. 2014;26:2273-82. https://doi.org/10.1007/s10811-014-0251-4
  29. Ogato T, Kifle D, Lemma B. Underwater light climate, thermal and chemical characteristics of the tropical soda lake Chitu, Ethiopia: spatio-temporal variations. Limnologica. 2015;52:1-10. https://doi.org/10.1016/j.limno.2015.02.003
  30. Ogoyi DO, Mwita CJ, Nguu EK, Shiundu PM. Determination of heavy metal content in water, sediment and microalgae from Lake Victoria, East Africa. Open Environ Eng J. 2011;4:156-61. https://doi.org/10.2174/1874829501104010156
  31. Okoth OE, Mucai M, Shivoga WA, Miller SN, Rasowo J, Ngugi CC. Spatial and seasonal variations in phytoplankton community structure in alkaline-saline Lake Nakuru, Kenya. Lakes Reserv Sci Policy Manag Sustain Use. 2009;14:57-69. https://doi.org/10.1111/j.1440-1770.2009.00392.x
  32. Schagerl M, Oduor SO. Phytoplankton community relationship to environmental variables in three Kenyan Rift Valley saline-alkaline lakes. Mar Freshw Res. 2008;59:125-36. https://doi.org/10.1071/MF07095
  33. Seyoum M. Invertebrates of East African soda lakes. In: Schagerl M, editor. Soda Lakes of East Africa. Cham: Springer; 2016. p. 205-26.
  34. Sharma N, Mishra MK, Tripathi S, Mishra V. Identification of diatom from the suspected cloth sample and their comparative study with the concord water body: case study. International Journal of Social Relevance and Concern (IJSRC), 2015;3:53-7.
  35. Sharma P, Patil P, Rao N, Swamy KV, Khetmalas MB, Tandon GD. Algal database-bioprospecting indigenous algae for industrial application. Indian J Biotechnol. 2013;12:548-9.
  36. Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles. 2014;18:791-809. https://doi.org/10.1007/s00792-014-0670-9
  37. Wood RB, Talling JF. Chemical and algal relationships in a salinity series of Ethiopian inland waters. Hydrobiologia. 1988;158:29-67. https://doi.org/10.1007/BF00026266