참고문헌
- J.-P. Bourguignon, A mathematician's visit to Kaluza-Klein theory, Rend. Sem. Mat. Univ. Politec. Torino 1989 (1989), Special Issue, 143-163.
- J.-P. Bourguignon and H. B. Lawson Jr., Stability and isolation phenomena for YangMills fields, Comm. Math. Phys. 79 (1981), no. 2, 189-230. http://projecteuclid.org/euclid.cmp/1103908963 103908963
- A. W. Cunha and M. D. Siddiqi, Characterizations of gradient h-almost Yamabe solitons, Results Math. 78 (2023), no. 2, Paper No. 47, 11 pp. https://doi.org/10.1007/s00025-022-01821-2
- U. C. De, M. N. I. Khan, and A. Sardar, h-Almost Ricci-Yamabe solitons in paracontact geometry, Mathematics 10(18) (2022), 3388.
- J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. https://doi.org/10.2307/2373037
- H. Ghahremani-Gol, Some results on h-almost Ricci solitons, J. Geom. Phys. 137 (2019), 212-216. https://doi.org/10.1016/j.geomphys.2018.12.002
- J. Gomes, Q. Wang, and C. Xia, On the h-almost Ricci soliton, J. Geom. Phys. 114 (2017), 216-222. https://doi.org/10.1016/j.geomphys.2016.12.010
- S. Guler and M. Crasmareanu, Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy, Turkish J. Math. 43 (2019), no. 5, 2631-2641. https://doi.org/10.3906/mat-1902-38
- G. Gupta, R. Sachdeva, R. Kumar, and R. Rani, On conformal Riemannian maps whose total manifold admits a Ricci soliton, J. Geom. Phys. 178 (2022), Paper No. 104539, 19 pp. https://doi.org/10.1016/j.geomphys.2022.104539
- R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255-306. http://projecteuclid.org/euclid.jdg/1214436922 https://doi.org/10.4310/jdg/1214436922
- R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988. https://doi.org/10.1090/conm/071/954419
- M. A. Lone and T. A. Wani, Conformal Ricci solitons on generalized (κ, µ)-space forms, Int. J. Geom. Methods Mod. Phys. 19 (2022), no. 14, Paper No. 2250226, 14 pp. https://doi.org/10.1142/S0219887822502267
- M. A. Lone and T. A. Wani, On slant Riemannian submersions from conformal Sasakian manifolds, Quaest. Math. (2023). https://doi.org/10.2989/16073606.2023.2260104
- S. E. Meri,c and E. Kili,c, Riemannian submersions whose total manifolds admit a Ricci soliton, Int. J. Geom. Methods Mod. Phys. 16 (2019), no. 12, 1950196, 12 pp. https://doi.org/10.1142/S0219887819501962
- B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. http://projecteuclid.org/euclid.mmj/1028999604 1028999604
- T. A. Wani and M. A. Lone, Horizontally conformal submersions from CR-submanifolds of locally conformal quaternionic Kaehler manifolds, Mediterr. J. Math. 19 (2022), no. 3, Paper No. 114, 12 pp. https://doi.org/10.1007/s00009-022-02032-3
- B. Watson, Riemannian submersions and instantons, Math. Modelling 1 (1980), no. 4, 381-393. https://doi.org/10.1016/0270-0255(80)90048-2
- A. Yadav and K. Meena, Riemannian maps whose total manifolds admit a Ricci soliton, J. Geom. Phys. 168 (2021), Paper No. 104317, 13 pp. https://doi.org/10.1016/j.geomphys.2021.104317
- A. Yadav and K. Meena, Clairaut Riemannian maps whose total manifolds admit a Ricci soliton, Int. J. Geom. Methods Mod. Phys. 19 (2022), no. 2, Paper No. 2250024, 17 pp. https://doi.org/10.1142/S0219887822500244
- F. Zeng, On the h-almost Yamabe soliton, J. Math. Study 54 (2021), no. 4, 371-386. https://doi.org/10.4208/jms.v54n4.21.03