DOI QR코드

DOI QR Code

RIEMANNIAN SUBMERSIONS WHOSE TOTAL MANIFOLD ADMITS h-ALMOST RICCI-YAMABE SOLITON

  • Mehraj Ahmad Lone (Department of Mathematics National Institute of Technology Srinagar) ;
  • Towseef Ali Wani (Department of Mathematics National Institute of Technology Srinagar)
  • 투고 : 2023.08.04
  • 심사 : 2023.11.03
  • 발행 : 2024.04.30

초록

In this paper, we study Riemannian submersions whose total manifold admits h-almost Ricci-Yamabe soliton. We characterize the fibers of the submersion and see under what conditions the fibers form h-almost Ricci-Yamabe soliton. Moreover, we find the necessary condition for the base manifold to be an h-almost Ricci-Yamabe soliton and Einstein manifold. Later, we compute scalar curvature of the total manifold and using this we find the necessary condition for h-almost Yamabe solition to be shrinking, expanding and steady. At the end, we give a non-trivial example.

키워드

참고문헌

  1. J.-P. Bourguignon, A mathematician's visit to Kaluza-Klein theory, Rend. Sem. Mat. Univ. Politec. Torino 1989 (1989), Special Issue, 143-163. 
  2. J.-P. Bourguignon and H. B. Lawson Jr., Stability and isolation phenomena for YangMills fields, Comm. Math. Phys. 79 (1981), no. 2, 189-230. http://projecteuclid.org/euclid.cmp/1103908963  103908963
  3. A. W. Cunha and M. D. Siddiqi, Characterizations of gradient h-almost Yamabe solitons, Results Math. 78 (2023), no. 2, Paper No. 47, 11 pp. https://doi.org/10.1007/s00025-022-01821-2 
  4. U. C. De, M. N. I. Khan, and A. Sardar, h-Almost Ricci-Yamabe solitons in paracontact geometry, Mathematics 10(18) (2022), 3388. 
  5. J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. https://doi.org/10.2307/2373037 
  6. H. Ghahremani-Gol, Some results on h-almost Ricci solitons, J. Geom. Phys. 137 (2019), 212-216. https://doi.org/10.1016/j.geomphys.2018.12.002 
  7. J. Gomes, Q. Wang, and C. Xia, On the h-almost Ricci soliton, J. Geom. Phys. 114 (2017), 216-222. https://doi.org/10.1016/j.geomphys.2016.12.010 
  8. S. Guler and M. Crasmareanu, Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy, Turkish J. Math. 43 (2019), no. 5, 2631-2641. https://doi.org/10.3906/mat-1902-38 
  9. G. Gupta, R. Sachdeva, R. Kumar, and R. Rani, On conformal Riemannian maps whose total manifold admits a Ricci soliton, J. Geom. Phys. 178 (2022), Paper No. 104539, 19 pp. https://doi.org/10.1016/j.geomphys.2022.104539 
  10. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255-306. http://projecteuclid.org/euclid.jdg/1214436922  https://doi.org/10.4310/jdg/1214436922
  11. R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988. https://doi.org/10.1090/conm/071/954419 
  12. M. A. Lone and T. A. Wani, Conformal Ricci solitons on generalized (κ, µ)-space forms, Int. J. Geom. Methods Mod. Phys. 19 (2022), no. 14, Paper No. 2250226, 14 pp. https://doi.org/10.1142/S0219887822502267 
  13. M. A. Lone and T. A. Wani, On slant Riemannian submersions from conformal Sasakian manifolds, Quaest. Math. (2023). https://doi.org/10.2989/16073606.2023.2260104 
  14. S. E. Meri,c and E. Kili,c, Riemannian submersions whose total manifolds admit a Ricci soliton, Int. J. Geom. Methods Mod. Phys. 16 (2019), no. 12, 1950196, 12 pp. https://doi.org/10.1142/S0219887819501962 
  15. B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. http://projecteuclid.org/euclid.mmj/1028999604  1028999604
  16. T. A. Wani and M. A. Lone, Horizontally conformal submersions from CR-submanifolds of locally conformal quaternionic Kaehler manifolds, Mediterr. J. Math. 19 (2022), no. 3, Paper No. 114, 12 pp. https://doi.org/10.1007/s00009-022-02032-3 
  17. B. Watson, Riemannian submersions and instantons, Math. Modelling 1 (1980), no. 4, 381-393. https://doi.org/10.1016/0270-0255(80)90048-2 
  18. A. Yadav and K. Meena, Riemannian maps whose total manifolds admit a Ricci soliton, J. Geom. Phys. 168 (2021), Paper No. 104317, 13 pp. https://doi.org/10.1016/j.geomphys.2021.104317 
  19. A. Yadav and K. Meena, Clairaut Riemannian maps whose total manifolds admit a Ricci soliton, Int. J. Geom. Methods Mod. Phys. 19 (2022), no. 2, Paper No. 2250024, 17 pp. https://doi.org/10.1142/S0219887822500244 
  20. F. Zeng, On the h-almost Yamabe soliton, J. Math. Study 54 (2021), no. 4, 371-386. https://doi.org/10.4208/jms.v54n4.21.03