DOI QR코드

DOI QR Code

A GENERALIZATION OF THE SYMMETRY PROPERTY OF A RING VIA ITS ENDOMORPHISM

  • 투고 : 2023.11.05
  • 심사 : 2024.01.26
  • 발행 : 2024.04.30

초록

Lambek introduced the concept of symmetric rings to expand the commutative ideal theory to noncommutative rings. In this study, we propose an extension of symmetric rings called strongly α-symmetric rings, which serves as both a generalization of strongly symmetric rings and an extension of symmetric rings. We define a ring R as strongly α-symmetric if the skew polynomial ring R[x; α] is symmetric. Consequently, we provide proofs for previously established outcomes regarding symmetric and strongly symmetric rings, directly derived from the results we have obtained. Furthermore, we explore various properties and extensions of strongly α-symmetric rings.

키워드

과제정보

The authors would like to thank the referee for careful reading.

참고문헌

  1. D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852. https://doi.org/10.1080/00927879908826596 
  2. M. Baser, B. Hicyilmaz, F. Kaynarca, T. K. Kwak, and Y. Lee, Insertion-of-factors-property on skew polynomial rings, J. Korean Math. Soc. 52 (2015), no. 6, 1161-1178. https://doi.org/10.4134/JKMS.2015.52.6.1161 
  3. H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052 
  4. P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116 
  5. J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), no. 2, 85-88. https://doi.org/10.1090/S0002-9904-1932-05333-2 
  6. A. Eltiyeb and E. Ayoub, On strongly symmetric rings, Inter. J. Math. Appl. 5 (2017), 61-65. 
  7. K. R. Goodearl and R. B. Warfield Jr., An introduction to noncommutative Noetherian rings, second edition, London Mathematical Society Student Texts, 61, Cambridge Univ. Press, Cambridge, 2004. https://doi.org/10.1017/CBO9780511841699 
  8. E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005), no. 3, 207-224. https://doi.org/10.1007/s10474-005-0191-1 
  9. C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215-226. https://doi.org/10.1016/S0022-4049(99)00020-1 
  10. C. Y. Hong, N. K. Kim, and T. K. Kwak, On skew Armendariz rings, Comm. Algebra 31 (2003), no. 1, 103-122. https://doi.org/10.1081/AGB-120016752 
  11. C. Y. Hong, N. K. Kim, and Y. Lee, Skew polynomial rings over semiprime rings, J. Korean Math. Soc. 47 (2010), no. 5, 879-897. https://doi.org/10.4134/JKMS.2010.47.5.879 
  12. C. Y. Hong and T. K. Kwak, On minimal strongly prime ideals, Comm. Algebra 28 (2000), no. 10, 4867-4878. https://doi.org/10.1080/00927870008827127 
  13. C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Extensions of generalized Armendariz rings, Algebra Colloq. 13 (2006), no. 2, 253-266. https://doi.org/10.1142/S100538670600023X 
  14. C. Huh, H. K. Kim, N. K. Kim, and Y. Lee, Basic examples and extensions of symmetric rings, J. Pure Appl. Algebra 202 (2005), no. 1-3, 154-167. https://doi.org/10.1016/j.jpaa.2005.01.009 
  15. C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. https://doi.org/10.1081/AGB-120013179 
  16. H. L. Jin, F. Kaynarca, T. K. Kwak, and Y. Lee, On commutativity of skew polynomials at zero, Bull. Korean Math. Soc. 54 (2017), no. 1, 51-69. https://doi.org/10.4134/BKMS.b150623 
  17. D. A. Jordan, Bijective extensions of injective ring endomorphisms, J. London Math. Soc. (2) 25 (1982), no. 3, 435-448. https://doi.org/10.1112/jlms/s2-25.3.435 
  18. N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9 
  19. J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300. 
  20. T. K. Kwak, Extensions of extended symmetric rings, Bull. Korean Math. Soc. 44 (2007), no. 4, 777-788. https://doi.org/10.4134/BKMS.2007.44.4.777 
  21. T. K. Kwak, Y. Lee, and S. J. Yun, The Armendariz property on ideals, J. Algebra 354 (2012), 121-135. https://doi.org/10.1016/j.jalgebra.2011.12.019 
  22. J. Lambek, Lectures on rings and modules, Blaisdell Publishing Co., Waltham, MA, 1966. 
  23. J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. https://doi.org/10.4153/CMB-1971-065-1 
  24. G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1 
  25. G. Marks, A taxonomy of 2-primal rings, J. Algebra 266 (2003), no. 2, 494-520. https://doi.org/10.1016/S0021-8693(03)00301-6 
  26. J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. 
  27. N. H. McCoy, Subdirect sums of rings, Bull. Amer. Math. Soc. 53 (1947), 856-877. https://doi.org/10.1090/S0002-9904-1947-08867-4 
  28. A. R. Nasr-Isfahani and A. Moussavi, Skew Laurent polynomial extensions of Baer and p.p.-rings, Bull. Korean Math. Soc. 46 (2009), no. 6, 1041-1050. https://doi.org/10.4134/BKMS.2009.46.6.1041 
  29. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. http://projecteuclid.org/euclid.pja/1195510144  10144
  30. G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. https://doi.org/10.2307/1996398 
  31. G. Yang and Z. K. Liu, On strongly reversible rings, Taiwanese J. Math. 12 (2008), no. 1, 129-136. https://doi.org/10.11650/twjm/1500602492