DOI QR코드

DOI QR Code

COHEN-MACAULAY DIMENSION FOR COMPLEXES

  • Received : 2023.06.26
  • Accepted : 2023.10.19
  • Published : 2024.04.30

Abstract

In this paper, our focus lies in exploring the concept of Cohen-Macaulay dimension within the category of homologically finite complexes. We prove that over a local ring (R, 𝔪), any homologically finite complex X with a finite Cohen-Macaulay dimension possesses a finite CM-resolution. This means that there exists a bounded complex G of finitely generated R-modules, such that G is isomorphic to X and each nonzero Gi within the complex G has zero Cohen-Macaulay dimension.

Keywords

Acknowledgement

I would like to thank the referee for his/her detailed reading of this paper and thoughtful suggestions.

References

  1. M. Auslander and M. Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, Amer. Math. Soc., Providence, RI, 1969. 
  2. L. L. Avramov, V. N. Gasharov, and I. V. Peeva, Complete intersection dimension, Inst. Hautes Etudes Sci. Publ. Math. No. 86 (1997), 67-114 (1998). 
  3. L. W. Christensen, Gorenstein dimensions, Lecture Notes in Mathematics, 1747, Springer, Berlin, 2000. https://doi.org/10.1007/BFb0103980 
  4. L. W. Christensen, H.-B. Foxby, and A. Frankild, Restricted homological dimensions and Cohen-Macaulayness, J. Algebra 251 (2002), no. 1, 479-502. https://doi.org/10.1006/jabr.2001.9115 
  5. L. W. Christensen, A. Frankild, and H. Holm, On Gorenstein projective, injective and flat dimensions-a functorial description with applications, J. Algebra 302 (2006), no. 1, 231-279. https://doi.org/10.1016/j.jalgebra.2005.12.007 
  6. H.-B. Foxby, Isomorphisms between complexes with applications to the homological theory of modules, Math. Scand. 40 (1977), no. 1, 5-19. https://doi.org/10.7146/math.scand.a-11671 
  7. H.-B. Foxby, Bounded complexes of flat modules, J. Pure Appl. Algebra 15 (1979), no. 2, 149-172. https://doi.org/10.1016/0022-4049(79)90030-6 
  8. H.-B. Foxby, Hyperhomological algebra and commutative algebra, in preparation. 
  9. A. A. Gerko, On homological dimensions, Sb. Math. 192 (2001), no. 7-8, 1165- 1179; translated from Mat. Sb. 192 (2001), no. 8, 79-94. https://doi.org/10.1070/SM2001v192n08ABEH000587 
  10. H. Holm and P. Jorgensen, Cohen-Macaulay homological dimensions, Rend. Semin. Mat. Univ. Padova 117 (2007), 87-112. 
  11. S. Iyengar, Depth for complexes, and intersection theorems, Math. Z. 230 (1999), no. 3, 545-567. https://doi.org/10.1007/PL00004705 
  12. P. Sahandi, T. Sharif, and S. Yassemi, Cohen-Macaulay homological dimensions, Math. Scand. 126 (2020), no. 2, 189-208. https://doi.org/10.7146/math.scand.a-119382 
  13. S. Sather-Wagstaff, Complete intersection dimensions for complexes, J. Pure Appl. Algebra 190 (2004), no. 1-3, 267-290. https://doi.org/10.1016/j.jpaa.2003.09.002 
  14. S. Yassemi, G-dimension, Math. Scand. 77 (1995), no. 2, 161-174. https://doi.org/10.7146/math.scand.a-12557