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COHEN-MACAULAY DIMENSION FOR COMPLEXES

Fatemeh Mohammadi Aghjeh Mashhad

Abstract. In this paper, our focus lies in exploring the concept of Cohen-

Macaulay dimension within the category of homologically finite com-

plexes. We prove that over a local ring (R,m), any homologically finite
complex X with a finite Cohen-Macaulay dimension possesses a finite

CM-resolution. This means that there exists a bounded complex G of
finitely generated R-modules, such that G is isomorphic to X and each

nonzero Gi within the complex G has zero Cohen-Macaulay dimension.

1. Introduction

Throughout this paper, (R,m) is a local ring and all rings are commutative
and Noetherian with identity. The projective dimension of a finitely generated
module is a well-known and widely studied numerical invariant in classical ho-
mological algebra. However, there exist several refinements and extensions of
this dimension that provide valuable information about the algebraic and geo-
metric aspects of modules. One such refinement is the concept of Gorenstein
dimension, introduced by Auslander and Bridger [1]. Another refinement is the
notion of complete intersection dimension, which was introduced by Avramov,
Gasharov, and Peeva [2]. Furthermore, Gerko [9] introduced yet another re-
finement known as Cohen-Macaulay dimension. Assume that M is a finitely
generated R-module. These homological dimensions satisfy in the following
inequalities

CM-dimR M ≤ G–dimR M ≤ CI–dimR M ≤ pdR M,

with equality to the left of any finite quantity, see [2, Theorem 1.4] and [10,
Theorem 5.6].

The concept of projective dimension, originally defined for individual mod-
ules, has been extended to complexes of R-modules by Foxby [6–8]. Similarly,
the notion of Gorenstein dimension was developed for complexes of R-modules
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by Yassemi [14] and Christensen [3]. Additionally, Sather-Wagstaff [13] ex-
tended the concept of complete intersection dimension to the category of homo-
logically finite complexes. Recently, Sahandi, Sharif, and Yassemi [12] further
extended the concept of Cohen-Macaulay dimension to the category of homo-
logically bounded complexes. These extensions and developments allow for a
deeper and more comprehensive understanding of the homological properties
of complexes of modules, enriching the field of homological algebra.

Since many mathematicians are interested in studying homological dimen-
sions through resolutions, we present a significant theorem that allows the com-
putation of the Cohen-Macaulay dimension for a homologically finite complex
of R-modules using its syzygies, see Theorem 3.10. And as an interesting appli-
cation of this theorem, we demonstrate that any homologically finite complex
X with a finite Cohen-Macaulay dimension possesses a finite CM -resolution.
This means that there exists a bounded complex G of finitely generated R-
modules, isomorphic to X, such that each nonzero module Gi in the complex
has zero Cohen-Macaulay dimension, see Corollary 3.12.

2. Prerequisites

Throughout this paper, (R,m) is a commutative Noetherian local ring and
we will work within D(R), the derived category of R-modules. We recall that
the objects in D(R) are complexes of R-modules and symbol ≃ denotes iso-
morphisms in this category. For a complex

X = · · · −→ Xn+1

∂X
n+1−→ Xn

∂X
n−→ Xn−1 −→ · · ·

in D(R), its supremum and infimum are defined respectively by supX :=
sup{i ∈ Z |Hi(X) ̸= 0} and infX := inf{i ∈ Z |Hi(X) ̸= 0}, with the usual
convention that sup ∅ = −∞ and inf ∅ =∞. Let n be an integer. The nth sus-
pension of X is denoted by ΣnX, and it represents the complex X shifted n de-
grees to the left. The kernel and cokernel of ∂X

n are denoted ZX
n and Ωn−1(X),

respectively. For any R-module M , one has Ωn(X ⊗R M) ∼= Ωn(X)⊗R M , by
the right-exactness of - ⊗R M . The nth soft left- and right-truncations of X
are the complexes

⊂n X = · · · → 0→ Ωn(X)
∂X
n−−→ Xn−1

∂X
n−1−−−→ · · · and

Xn ⊃ = · · ·
∂X
n+2−−−→ Xn+1

∂X
n+1−−−→ ZX

n → 0→ · · · ,

respectively, where ∂X
n is the map induced by ∂X

n . The nth hard left- and
right-truncations of X are the complexes

⊏n X = · · · → 0→ Xn
∂X
n−−→ Xn−1

∂X
n−1−−−→ · · · and

Xn ⊐ = · · ·
∂X
n+2−−−→ Xn+1

∂X
n+1−−−→ Xn → 0→ · · · ,
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respectively. The full subcategory of complexes homologically bounded to the
right (resp. left) is denoted by D⊐(R) (resp. D⊏(R)). Also, the full subcate-
gories of homologically bounded complexes and of complexes with finitely gen-
erated homology modules will be denoted by D□(R) and Df (R), respectively.
The full subcategory of complexes whose homology modules concentrated in
degree zero will be denoted by D0(R). Since modules can be considered as
complexes concentrated in degree zero, we may and do identify the category of
R-modules and R-homomorphisms with the subcategory D0(R). Throughout,

for any two properties ♯ and ♮ of complexes, we set D♮
♯(R) := D♯(R)∩D♮(R). So,

for instance, Df
□(R) stands for the full subcategory of homologically bounded

complexes with finitely generated homology modules which we call them ho-
mologically finite complexes. For any complex X in D⊐(R) (resp. D⊏(R)),
there is a bounded to the right (resp. left) complex P (resp. I) of projective
(resp. injective) R-modules which is isomorphic to X in D(R). Such a complex
P (resp. I) is called a projective (resp. injective) resolution of X.

The right derived homomorphism functor RHomR(−,∼) is computed by
taking a projective resolution of the first argument or by taking an injec-
tive resolution of the second one. Also, we recall that for any ideal a of

R and any complex X ∈ Df
□(R), depth(a, X) is defined by depth(a, X) :=

− supRHomR(R/a, X), and we set depthR X := depth(m, X).
An R-module M is said to be Gorenstein projective if there exists an exact

complex P of projective R-modules such that M ∼= coker(P1 → P0) and the
complex HomR(P,N) is exact for all projective R-modules N . Also, for a
complex Y ∈ D⊐(R), the Gorenstein projective dimension of Y is defined by

GpdR Y := inf{sup{l ∈ Z |Ql ̸= 0} |Q is a bounded to the right complex of

Gorenstein projective R-modules such that Q ≃ Y }.

Any finitely generated Gorenstein projective R-module is called totally re-

flexive module. For a complex X ∈ Df
⊐(R), the G-dimension of X is defined

by

G–dimR X := inf{sup{l ∈ Z |Ql ̸= 0} |Q is a bounded to the right complex of

totally reflexive R-modules such that Q ≃ X}.

An R-moduleM is said to be Gorenstein flat if there exists an exact complex
F of flat R-modules such that M ∼= coker(F1 → F0) and the complex J⊗RF is
exact for all injective R-modules J . For a complex T ∈ D⊐(R), the Gorenstein
flat dimension of T is defined by

GfdR T := inf{sup{l ∈ Z |Ql ̸= 0} |Q is a bounded to the right complex of

Gorenstein flat R-modules such that Q ≃ T}.

Clearly, any projective (resp. flat) module is Gorenstein projective (resp.

Gorenstein flat). One can see that for X ∈ Df
⊐(R), we have GpdR X =

G–dimR X = GfdR X by [5, Proposition 3.8].
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3. Cohen-Macaulay dimension for complexes

In this section, we delve into the proofs of various results concerning the
Cohen-Macaulay dimension of homologically finite complexes. However, before
doing that, let us recall some relevant definitions.

Definition 3.1. Let (R,m) be a local ring. The ideal a of R is called G-perfect
if G–dimR R/a = depth(a, R).

Definition 3.2. Let (R,m) be a local ring. A CM -quasi-deformation of R
is a diagram of local homomorphisms R −→ R′ ←− Q, where R −→ R′

is a flat extension and R′ ←− Q is a CM -deformation, that is, a surjective
homomorphism whose kernel is a G-perfect ideal.

We recall that the Cohen-Macaulay dimension for a finitely generated R-
module M is defined by Gerko [9, Definition 3.2] as

CM-dimR M := inf{G–dimQ(M ⊗R R′)−G–dimQ(R
′) |R −→ R′ ←− Q is a

CM-quasi-deformation}.
This definition has been extended to the category of homologically bounded

complexes of R-modules as follows.

Definition 3.3 (cf. [12, Definition 3.1]). Let (R,m) be a local ring and Y be a
homologically bounded complex of R-modules. The Cohen-Macaulay projective
dimension of Y is defined as

CM∗-pdRY := inf{GpdQ(Y ⊗R R′)−GfdQ(R
′) |R −→ R′ ←− Q is a

CM-quasi-deformation}.

Remark 3.4. We notice that:

(i) If X is a homologically finite complex of R-modules, then by employing
[5, Proposition 3.8], we obtain the following equality:

CM∗-pdRX = inf{G–dimQ(X ⊗R R′)−G–dimQ(R
′) |R −→ R′ ←− Q

is a CM-quasi-deformation}.(‡)

(ii) For any finitely generated R-module M , CM∗-pdRM = CM-dimR M .

Notation 3.5. Remark 3.4(ii) demonstrates that the Cohen-Macaulay pro-
jective dimension serves as an extension of the Cohen-Macaulay dimension
within the category of finitely generated R-modules. Given our particular fo-
cus on studying the category of homologically finite complexes, we find it more
appropriate to utilize the notation CM-dimR(−), which represents the Cohen-
Macaulay dimension introduced by Gerko [9], instead of CM∗-pdR(−). There-
fore, for any homologically finite complexX, we use the notation of CM-dimR X
instead of CM∗-pdRX, and we call it Cohen-Macaulay dimension of X. As a
result, we can rewrite (‡) accordingly, reflecting this notation change:

CM-dimR X = inf{G–dimQ(X ⊗R R′)−G–dimQ(R
′) |R −→ R′ ←− Q is a
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CM-quasi-deformation}.

The following result presents some immediate properties related to the
Cohen-Macaulay dimension of homologically finite complexes.

Properties 3.6. Let (R,m) be a local ring and X be a homologically finite
complex of R-modules.

(i) CM-dimR X ∈ {∞} ∪ Z ∪ {−∞}.
(ii) CM-dimR X = −∞⇐⇒ X ≃ 0.
(iii) If X ≃ Y , then CM-dimR X = CM-dimR Y .
(iv) For any integer n, CM-dimR ΣnX = CM-dimR X + n.

The following proposition extends the Cohen-Macaulay analogue of
Auslander-Bouchsbum formula [9, Theorem 3.8] to complexes.

Proposition 3.7. Let (R,m) be a local ring and X be a homologically finite
complex of R-modules. There exists an inequality CM-dimR X ≤ G–dimR X
with equality if G–dimR X is finite. Moreover, if CM-dimR X is finite, then
CM-dimR X = depthR− depthR X.

Proof. For the first part see [12, Remark 3.2(2)] and [5, Proposition 3.8(b)],
and the proof for the second part is similar to [9, Theorem 3.8]. □

In the following lemma, by considering [5, Proposition 3.8(b)], we extend
[10, Lemma 5.5] to homologically finite complexes of R-modules and also we
improve the first part of Proposition 3.7. We recall that a semi-dualizing R-
module C is a finitely generated R-module such that the natural homothety
morphism R −→ HomR(C,C) is an isomorphism and ExtiR(C,C) = 0 for all
i > 0. An example of a semi-dualizing R-module is R itself. Let C be a semi-
dualizing R-module. The direct sum R⊕C can be equipped with the product
(r1, c1)(r2, c2) = (r1r2, r1c2+r2c1). This turns R⊕C into a ring which is called
a trivial extension of R by C and denoted by R ⋉ C. Note that we have an
epimorphism R⋉C −→ R such that its kernel is G-perfect by [9, Lemma 3.6].

Lemma 3.8. Let (R,m) be a local ring and X be a homologically finite complex
of R-modules. Assume that C is a semi-dualizing R-module. If G–dimR⋉C X
is finite, then CM-dimR X = G–dimR⋉C X.

Proof. We consider the G-quasi-deformation R −→ R ←− R ⋉ C. Then
CM-dimR X ≤ G–dimR⋉C X and so by the assumption CM-dimR X is finite. It
is easy to see that depthR⋉C R⊕C = depthR R and depthR⋉C X = depthR X.
So, Proposition 3.7 and [3, Theorem 2.3.13] yield that CM-dimR X = depthR−
depthR X = G–dimR⋉C X. □

We require the following lemma to prove Theorem 3.10. Recall that for
a homologically bounded to the right complex X, its projective dimension is
defined by

pdR X := inf{sup{i ∈ Z |Pi ̸= 0} |P is a projective resolution of X}.
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Lemma 3.9. Let R be a Noetherian ring and X be a homologically bounded to
the right complex with finitely generated homology modules. Assume that n is
an integer and n ≥ supX.

(i) If Ωn(X) = 0, then pdR X = G–dimR X < n.
(ii) If Ωn(X) ̸= 0, then G–dimR(Ω

n(X)) = max{0,G–dimR X − n}.

Proof. Let P be a projective resolution of X. Since n ≥ supX, Pn ⊐≃ΣnΩn(P ).
Consider the following exact sequence

(†) 0→⊏n−1 P → P → Pn ⊐→ 0.

Since pdR(⊏n−1 P ) is finite, G–dimR(⊏n−1 P ) = pdR(⊏n−1 P ) ≤ n − 1 by
[3, Proposition 2.3.10]. Now, we consider the following cases:

(i) If Ωn(X) = 0, then from (†) we deduce that ⊏n−1 P ≃ P and so pdR X =
pdR P = pdR(⊏n−1 P ) ≤ n − 1 which implies that pdR X = G–dimR X < n
by [3, Proposition 2.3.10].

(ii) Assume that Ωn(X) ̸= 0. Since G–dimR(⊏n−1 P ) is finite, from (†) and
[3, Corollary 2.3.8 and Lemma 2.1.12] we deduce that G–dimR P is finite if and
only if G–dimR(Pn ⊐) is finite. As G–dimR(Ω

n(P )) = G–dimR(Pn ⊐)− n, we
conclude that G–dimR(Pn ⊐) is finite if and only if G–dimR(Ω

n(P )) is finite.
So, we assume that G–dimR(Ω

n(P )) is finite. Then, by [3, Corollary 2.3.8 and
A.2.1.3], we have

G–dimR(Ω
n(P )) = − infRHomR(Ω

n(P ), R)

= − infRHomR(Σ
−n(Pn ⊐), R)

= − inf ΣnRHomR(Pn ⊐, R)

= −(infRHomR(Pn ⊐, R) + n)

= − inf ⊏−n RHomR(P,R)− n

= −min{−n, infRHomR(P,R)} − n

= max{n,− infRHomR(P,R)} − n

= max{0,G–dimR X − n}. □

In the following theorem, we determine the Cohen-Macaulay dimension of
a homologically finite complex of R-modules based on the Cohen-Macaulay
dimension of its syzygies.

Theorem 3.10. Let (R,m) be a local ring and X be a homologically finite
complex of R-modules. Assume that G is a bounded to the right complex of
totally reflexive R-modules such that G ≃ X. Fix an integer n ≥ supX.

(i) If Ωn(G) = 0, then CM-dimR X = G–dimR X < n.
(ii) If Ωn(G) ̸= 0, then CM-dimR(Ω

n(G)) = max{0,CM-dimR X − n}.

Proof. Since n ≥ supX, Gn ⊐≃ ΣnΩn(G). So, from the following exact se-
quence

0→⊏n−1 G→ G→ Gn ⊐→ 0,
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and [11, Proposition 5.1], we have

depthR(Ω
n(G)) = depthR(Gn ⊐) + n

≥ min{depthR(⊏n−1 G)− 1,depthR G}+ n.(✠)

Now, we consider the following cases:
(i) If Ωn(G) = 0, then ⊏n−1 G ≃ G and so G–dimR X = G–dimR G =

G–dimR(⊏n−1 G) ≤ n − 1 which implies that CM-dimR X = G–dimR X < n
by Proposition 3.7.

(ii) Assume that Ωn(G) ̸= 0. We show that CM-dimR X is finite if and only
if CM-dimR(Ω

n(G)) is finite. First, we assume that CM-dimR X is finite. Then
there exists a CM -quasi-deformation R −→ R′ ←− Q such that CM-dimR X =
G–dimQ(X ⊗R R′)−G–dimQ R′. Therefore G–dimQ(X ⊗R R′) is finite and so

G–dimQ(Ω
n(X ⊗R R′)) = max{0,G–dimQ(X ⊗R R′)− n}

is finite by Lemma 3.9. Note that n ≥ sup(X ⊗R R′) and Ωn(X ⊗R R′) ̸=
0. Since G–dimQ(Ω

n(X ⊗R R′)) = G–dimQ(Ω
n(X) ⊗R R′), we deduce that

G–dimQ(Ω
n(X)⊗R R′) is finite which implies that CM-dimR(Ω

n(G)) is finite.
Similarly, one can see that if CM-dimR(Ω

n(G)) is finite, then CM-dimR X is
also finite. Let us assume that t := CM-dimR(Ω

n(G)) is finite. Then there
exists a CM -quasi-deformation R −→ R′ ←− Q such that

t = G–dimQ (Ωn(G)⊗R R′)−G–dimQ R′.

So

CM-dimR X − n ≤ G–dimQ(X ⊗R R′)−G–dimQ R′ − n

≤ max{0,G–dimQ(X ⊗R R′)− n} −G–dimQ R′

= G–dimQ (Ωn(X ⊗R R′))−G–dimQ R′

= G–dimQ (Ωn(X)⊗R R′)−G–dimQ R′

= t,

which implies that max{0,CM-dimR X − n} ≤ t. On the other hand, by
Proposition 3.7, (✠), and [3, Theorem 2.3.13], we have

t = depthR− depthR(Ω
n(G))

≤ depthR−min{depthR(⊏n−1 G)− 1,depthR G} − n

= depthR+max{1− depthR(⊏n−1 G),−depthR G} − n

= max{1− depthR(⊏n−1 G) + depthR,depthR− depthR G} − n

= max{1 + G–dimR(⊏n−1 G),CM-dimR G} − n

≤ max{n,CM-dimR G} − n

= max{0,CM-dimR G− n}
= max{0,CM-dimR X − n},

and this completes the proof. □
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We record the following immediate corollary.

Corollary 3.11. Let (R,m) be a local ring and X be a homologically finite
complex of R-modules. The following are equivalent.

(i) CM-dimR X <∞.
(ii) For any integer n ≥ supX and any bounded to the right complex G of

totally reflexive R-modules such that G≃X, we have CM-dimR(Ω
n(G))

<∞.
(iii) For some integer n ≥ supX and any bounded to the right complex G of

totally reflexive R-modules such that G≃X, we have CM-dimR(Ω
n(G))

<∞.

As an interesting application of Theorem 3.10, we prove that any homolog-
ically finite complex X with a finite Cohen-Macaulay dimension has a finite
CM -resolution. This means that there exists a bounded complex G of finitely
generated R-modules, isomorphic to X, such that each nonzero module Gi in
the complex has zero Cohen-Macaulay dimension.

Corollary 3.12. Let (R,m) be a local ring and X be a homologically finite
complex of R-modules. If CM-dimR X is finite, then there exists a bounded
complex of finitely generated R-modules G such that G ≃ X and each nonzero
Gi has zero Cohen-Macaulay dimension.

Proof. By [8, Theorem 2.6 L)], there exists a bounded to the right complex of
finitely generated free R-modules G such that X ≃ G. Let s := CM-dimR X.
Then supX ≤ s by [5, Proposition 3.8], [12, Corollary 4.2], and [4, Proposition
2.2], and so X ≃ G ≃⊂s G. Then (⊂s G)i = 0 for each i > s and (⊂s G)i is
finitely generated free R-module for each i ̸= s. Also, (⊂s G)s ∼= Ωs(G) has
zero Cohen-Macaulay dimension by Theorem 3.10. So, ⊂s G is a complex that
satisfies in the conditions of our claim. □
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