DOI QR코드

DOI QR Code

A SURVEY OF LENGTHS OF LINEAR GROUPS WITH RESPECT TO CERTAIN GENERATING SETS

  • Nguyen Thi Thai Ha (Faculty of Mathematics and Computer Science University of Science, Vietnam National University, Campus in Ho Chi Minh City University of Transport and Communications)
  • Received : 2023.03.16
  • Accepted : 2023.09.08
  • Published : 2024.04.30

Abstract

In this paper, we summarise and present results on involution lengths and commutator lengths of certain linear groups such as special linear groups, projective linear groups, upper triangle matrix groups and Vershik-Kerov groups. Some open problems motivated by these results are also proposed.

Keywords

References

  1. J. Ambrosiewicz, On the squares of sets of linear groups, Rend. Sem. Mat. Univ. Padova 75 (1986), 253-256.
  2. F. A. Arlinghaus, L. N. Vaserstein, and H. You, Products of involutory matrices over rings, Linear Algebra Appl. 229 (1995), 37-47. https://doi.org/10.1016/0024-3795(93)00346-2
  3. C. S. Ballantine, Products of involutory matrices. I, Linear and Multilinear Algebra 5 (1977), no. 1, 53-62. https://doi.org/10.1080/03081087708817174
  4. M. H. Bien, T. H. Dung, and N. T. T. Ha, A certain decomposition of infinite invertible matrices over division algebras, Linear Multilinear Algebra 71 (2023), no. 12, 1948-1956. https://doi.org/10.1080/03081087.2022.2091508
  5. M. H. Bien, T. H. Dung, N. T. T. Ha, and T. N. Son, Decompositions of matrices over division algebras into products of commutators, Linear Algebra Appl. 646 (2022), 119-131. https://doi.org/10.1016/j.laa.2022.03.025
  6. M. H. Bien, T. H. Dung, N. T. T. Ha and T. N. Son, Involution widths of skew linear groups generated by involutions, Linear Algebra Appl. 679 (2023), 305-326. https://doi.org/10.1016/j.laa.2023.09.019
  7. A. Bier and W. Ho lubowski, A note on commutators in the group of infinite triangular matrices over a ring, Linear Multilinear Algebra 63 (2015), no. 11, 2301-2310. https://doi.org/10.1080/03081087.2014.1003529
  8. N. Bisht, Stable range conditions, Jordan J. Math. Stat. 15 (2022), no. 1, 33-42.
  9. J. D. Botha, A unification of some matrix factorization results, Linear Algebra Appl. 431 (2009), no. 10, 1719-1725. https://doi.org/10.1016/j.laa.2009.06.006
  10. D. Carter and G. Keller, Elementary expressions for unimodular matrices, Comm. Algebra 12 (1984), no. 3-4, 379-389. https://doi.org/10.1080/00927878408823008
  11. C. de Seguins Pazzis, Products of involutions in the stable general linear group, J. Algebra 530 (2019), 235-289. https://doi.org/10.1016/j.jalgebra.2019.04.009
  12. R. K. Dennis and L. N. Vaserstein, On a question of M. Newman on the number of commutators, J. Algebra 118 (1988), no. 1, 150-161. https://doi.org/10.1016/0021-8693(88)90055-5
  13. R. K. Dennis and L. N. Vaserstein, Commutators in linear groups, K-Theory 2 (1989), no. 6, 761-767. https://doi.org/10.1007/BF00538432
  14. J. A. Dieudonne, Les determinants sur un corps non commutatif, Bull. Soc. Math. France 71 (1943), 27-45. https://doi.org/10.24033/bsmf.1345
  15. D. Z. Djokovic, Product of two involutions, Arch. Math. (Basel) 18 (1967), 582-584. https://doi.org/10.1007/BF01898863
  16. D. Z. Djokovic, Products of dilatations, Indiana Univ. Math. J. 26 (1977), no. 3, 537-540. https://doi.org/10.1512/iumj.1977.26.26040
  17. D. Z. Djokovic, On commutators in real semisimple Lie groups, Osaka J. Math. 23 (1986), 223-238.
  18. P. Draxl and M. Kneser, SK1 Schiefkorpern, Lecture Notes in Math. Vol 778, Springer, Berlin, 1980.
  19. E. A. Egorchenkova and N. L. Gordeev, Products of commutators on a general linear group over a division algebra, J. Math. Sci. (N.Y.) 243 (2019), no. 4, 561-572. https://doi.org/10.1007/s10958-019-04556-8
  20. E. W. Ellers, Products of two involutory matrices over skewfields, Linear Algebra Appl. 26 (1979), 59-63. https://doi.org/10.1016/0024-3795(79)90172-1
  21. E. W. Ellers and J. G. Malzan, Products of reflections in GL(n, H), Linear and Multilinear Algebra 20 (1987), no. 4, 281-324. https://doi.org/10.1080/03081088708817763
  22. W. B. Fite, On metabelian groups, Trans. Amer. Math. Soc. 3 (1902), no. 3, 331-353. https://doi.org/10.2307/1986383
  23. I. Gargate and M. Gargate, Expressing matrices into products of commutators of involutions, skew-involutions, finite order and skew finite order matrices, https://arxiv.org/abs/2007.12305.
  24. I. Gargate and M. Gargate, Expressing upper triangular matrices as products of commutators of finite order elements, Linear Multilinear Algebra 70 (2022), no. 20, 5571-5579. https://doi.org/10.1080/03081087.2021.1920875
  25. K. R. Goodearl and P. Menal, Stable range one for rings with many units, J. Pure Appl. Algebra 54 (1988), no. 2-3, 261-287. https://doi.org/10.1016/0022-4049(88)90034-5
  26. L. Grunenfelder, T. Kosir, M. Omladic, and H. Radjavi, On groups generated by elements of prime order, Geom. Dedicata 75 (1999), no. 3, 317-332. https://doi.org/10.1023/A:1005123722362
  27. C. K. Gupta and W. Ho lubowski, Commutator subgroup of Vershik-Kerov group, Linear Algebra Appl. 436 (2012), no. 11, 4279-4284. https://doi.org/10.1016/j.laa.2012.01.032
  28. W. H. Gustafson, On products of involutions, in Paul Halmos Celebrating 50 Years of Mathematics, Springer-Verlag, New York, 1991.
  29. W. H. Gustafson, P. R. Halmos, and H. Radjavi, Products of involutions, Linear Algebra Appl. 13 (1976), no. 1-2, 157-162. https://doi.org/10.1016/0024-3795(76)90054-9
  30. P. Gvozdevsky, Commutator lengths in the general linear group over a division ring, J. Math. Sci. (N.Y.) 264 (2022), no. 1, 29-38; translated from Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 492 (2020), Voprosy Teorii Predstavlenii Algebr i Grupp. 35, 45-60.
  31. P. R. Halmos and S. Kakutani, Products of symmetries, Bull. Amer. Math. Soc. 64 (1958), 77-78. https://doi.org/10.1090/S0002-9904-1958-10156-1
  32. R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, Commutator width in Chevalley groups, Note Mat. 33 (2013), no. 1, 139-170. https://doi.org/10.1285/i15900932v33n1p139
  33. F. Hoffman and E. Paige, Products of two involutions in the general linear group, Indiana Univ. Math. J. 20 (1970), 1017-1020. https://doi.org/10.1512/iumj.1971.20.20096
  34. X. Hou, Decomposition of infinite matrices into products of commutators of involutions, Linear Algebra Appl. 563 (2019), 231-239. https://doi.org/10.1016/j.laa.2018.11.001
  35. X. Hou, S. Li, and Q. Zheng, Expressing infinite matrices over rings as products of involutions, Linear Algebra Appl. 532 (2017), 257-265. https://doi.org/10.1016/j.laa.2017.07.001
  36. H. Ishibashi, Involutary expressions for elements in GLn(Z) and SLn(Z), Linear Algebra Appl. 219 (1995), 165-177. https://doi.org/10.1016/0024-3795(93)00206-F
  37. H. Ishibashi, Factorization of elements in classical groups into a product of involutions, Int. J. Pure Appl. Math. 41 (2007), no. 4, 499-504.
  38. F. Knuppel, GL±n (R) is 5-reflectional, Abh. Math. Sem. Univ. Hamburg 61 (1991), 47-51. https://doi.org/10.1007/BF02950750
  39. F. Knuppel and K. Nielsen, SL(V ) is 4-reflectional, Geom. Dedicata 38 (1991), no. 3, 301-308. https://doi.org/10.1007/BF00181192
  40. T. J. Laffey, Products of Matrices, Generators and Relations in Groups and Geometries (1991), 95-123.
  41. T. J. Laffey, Expressing unipotent matrices over rings as products of involutions, Irish Math. Soc. Bull. No. 40 (1998), 24-30.
  42. K. M. Liu, Decomposition of matrices into three involutions, Linear Algebra Appl. 111 (1988), 1-24. https://doi.org/10.1016/0024-3795(88)90047-X
  43. A. J. Malcolm, The involution width of finite simple groups, J. Algebra 493 (2018), 297-340. https://doi.org/10.1016/j.jalgebra.2017.08.036
  44. T. Nakayama and Y. Matsushima, Uber die multiplikative Gruppe einer p-adischen Divisionsalgebra, Proc. Imp. Acad. Tokyo 19 (1943), 622-628. http://projecteuclid.org/euclid.pja/1195573246
  45. M. Newman, Unimodular commutators, Proc. Amer. Math. Soc. 101 (1987), no. 4, 605-609. https://doi.org/10.2307/2046655
  46. A. G. O'Farrell, Reversibility questions in groups arising in analysis, in Complex analysis and potential theory, 293-300, CRM Proc. Lecture Notes, 55, Amer. Math. Soc., Providence, RI, 2012. https://doi.org/10.1090/crmp/055/21
  47. B. B. Phadke, Products of reflections, Arch. Math. (Basel) 26 (1975), no. 6, 663-665. https://doi.org/10.1007/BF01229796
  48. A. R. Sampson, A note on a new matrix decomposition, Linear Algebra Appl. 8 (1974), 459-463. https://doi.org/10.1016/0024-3795(74)90079-2
  49. K. Shoda, Einige Stzeuber Matrizen, Jpn. J. Math. 13 (1937), no. 3, 361-365. https://doi.org/10.4099/jjm1924.13.0_361
  50. K. Shoda, Uber den Kommutator der Matrizen, J. Math. Soc. Japan 3 (1951), 78-81. https://doi.org/10.2969/jmsj/00310078
  51. A. S. Sivatski and A. V. Stepanov, On the word length of commutators in GLn(R), K-Theory 17 (1999), no. 4, 295-302. https://doi.org/10.1023/A:1007730801851
  52. R. S lowik, The lower central series of subgroups of the Vershik-Kerov group, Linear Algebra Appl. 436 (2012), no. 7, 2299-2310. https://doi.org/10.1016/j.laa.2011.08.047
  53. R. S lowik, Involutions in triangular groups, Linear Multilinear Algebra 61 (2013), no. 7, 909-916. https://doi.org/10.1080/03081087.2012.716432
  54. R. S lowik, Expressing infinite matrices as products of involutions, Linear Algebra Appl. 438 (2013), no. 1, 399-404. https://doi.org/10.1016/j.laa.2012.07.032
  55. R. S lowik, Bijective maps of infinite triangular and unitriangular matrices preserving commutators, Linear Multilinear Algebra 61 (2013), no. 8, 1028-1040. https://doi.org/10.1080/03081087.2012.728214
  56. R. S lowik, On products of matrices of a fixed order, Linear Algebra Appl. 446 (2014), 104-114. https://doi.org/10.1016/j.laa.2013.12.033
  57. R. S lowik, More about involutions in the group of almost-Riordan arrays, Linear Algebra Appl. 624 (2021), 247-258. https://doi.org/10.1016/j.laa.2021.04.016
  58. T. N. Son, T. H. Dung, N. T. T. Ha, and M. H. Bien, On decompositions of matrices into products of commutators of involutions, Electron. J. Linear Algebra 38 (2022), 123-130. https://doi.org/10.13001/ela.2022.6797
  59. A. R. Sourour, A factorization theorem for matrices, Linear and Multilinear Algebra 19 (1986), no. 2, 141-147. https://doi.org/10.1080/03081088608817711
  60. A. Stepanov and N. Vavilov, Decomposition of transvections: a theme with variations, K-Theory 19 (2000), no. 2, 109-153. https://doi.org/10.1023/A:1007853629389
  61. A. A. Suslin and M. S. TuLenbaev, Stabilization theorem for the Milnor K2-functor, J. Soviet Math. 17 (1981), no. 2, 1804-1819. https://doi.org/10.1007/BF01091768
  62. R. C. Thompson, Commutators in the special and general linear groups, Trans. Amer. Math. Soc. 101 (1961), 16-33. https://doi.org/10.2307/1993409
  63. L. N. Vaserstein and E. Wheland, Commutators and companion matrices over rings of stable rank 1, Linear Algebra Appl. 142 (1990), 263-277. https://doi.org/10.1016/0024-3795(90)90270-M
  64. W. C. Waterhouse, Solutions of advanced problems: 5876, Amer. Math. Monthly 81 (1974), no. 9, 1035.
  65. M. Wonenburger Planells, Transformations which are products of two involutions, J. Math. Mech. 16 (1966), 327-338. https://doi.org/10.1512/iumj.1967.16.16023
  66. H. You, Products of involutory matrices with determinant 1 over rings, Northeast. Math. J. 14 (1998), no. 4, 435-439.
  67. H. You and S. Chen, Products of commutators of dilatations, Linear Algebra Appl. 291 (1999), no. 1-3, 51-61. https://doi.org/10.1016/S0024-3795(98)10222-7
  68. B. Zheng, Decomposition of matrices into commutators of involutions, Linear Algebra Appl. 347 (2002), 1-7. https://doi.org/10.1016/S0024-3795(01)00597-3