References
- J. Ambrosiewicz, On the squares of sets of linear groups, Rend. Sem. Mat. Univ. Padova 75 (1986), 253-256.
- F. A. Arlinghaus, L. N. Vaserstein, and H. You, Products of involutory matrices over rings, Linear Algebra Appl. 229 (1995), 37-47. https://doi.org/10.1016/0024-3795(93)00346-2
- C. S. Ballantine, Products of involutory matrices. I, Linear and Multilinear Algebra 5 (1977), no. 1, 53-62. https://doi.org/10.1080/03081087708817174
- M. H. Bien, T. H. Dung, and N. T. T. Ha, A certain decomposition of infinite invertible matrices over division algebras, Linear Multilinear Algebra 71 (2023), no. 12, 1948-1956. https://doi.org/10.1080/03081087.2022.2091508
- M. H. Bien, T. H. Dung, N. T. T. Ha, and T. N. Son, Decompositions of matrices over division algebras into products of commutators, Linear Algebra Appl. 646 (2022), 119-131. https://doi.org/10.1016/j.laa.2022.03.025
- M. H. Bien, T. H. Dung, N. T. T. Ha and T. N. Son, Involution widths of skew linear groups generated by involutions, Linear Algebra Appl. 679 (2023), 305-326. https://doi.org/10.1016/j.laa.2023.09.019
- A. Bier and W. Ho lubowski, A note on commutators in the group of infinite triangular matrices over a ring, Linear Multilinear Algebra 63 (2015), no. 11, 2301-2310. https://doi.org/10.1080/03081087.2014.1003529
- N. Bisht, Stable range conditions, Jordan J. Math. Stat. 15 (2022), no. 1, 33-42.
- J. D. Botha, A unification of some matrix factorization results, Linear Algebra Appl. 431 (2009), no. 10, 1719-1725. https://doi.org/10.1016/j.laa.2009.06.006
- D. Carter and G. Keller, Elementary expressions for unimodular matrices, Comm. Algebra 12 (1984), no. 3-4, 379-389. https://doi.org/10.1080/00927878408823008
- C. de Seguins Pazzis, Products of involutions in the stable general linear group, J. Algebra 530 (2019), 235-289. https://doi.org/10.1016/j.jalgebra.2019.04.009
- R. K. Dennis and L. N. Vaserstein, On a question of M. Newman on the number of commutators, J. Algebra 118 (1988), no. 1, 150-161. https://doi.org/10.1016/0021-8693(88)90055-5
- R. K. Dennis and L. N. Vaserstein, Commutators in linear groups, K-Theory 2 (1989), no. 6, 761-767. https://doi.org/10.1007/BF00538432
- J. A. Dieudonne, Les determinants sur un corps non commutatif, Bull. Soc. Math. France 71 (1943), 27-45. https://doi.org/10.24033/bsmf.1345
- D. Z. Djokovic, Product of two involutions, Arch. Math. (Basel) 18 (1967), 582-584. https://doi.org/10.1007/BF01898863
- D. Z. Djokovic, Products of dilatations, Indiana Univ. Math. J. 26 (1977), no. 3, 537-540. https://doi.org/10.1512/iumj.1977.26.26040
- D. Z. Djokovic, On commutators in real semisimple Lie groups, Osaka J. Math. 23 (1986), 223-238.
- P. Draxl and M. Kneser, SK1 Schiefkorpern, Lecture Notes in Math. Vol 778, Springer, Berlin, 1980.
- E. A. Egorchenkova and N. L. Gordeev, Products of commutators on a general linear group over a division algebra, J. Math. Sci. (N.Y.) 243 (2019), no. 4, 561-572. https://doi.org/10.1007/s10958-019-04556-8
- E. W. Ellers, Products of two involutory matrices over skewfields, Linear Algebra Appl. 26 (1979), 59-63. https://doi.org/10.1016/0024-3795(79)90172-1
- E. W. Ellers and J. G. Malzan, Products of reflections in GL(n, H), Linear and Multilinear Algebra 20 (1987), no. 4, 281-324. https://doi.org/10.1080/03081088708817763
- W. B. Fite, On metabelian groups, Trans. Amer. Math. Soc. 3 (1902), no. 3, 331-353. https://doi.org/10.2307/1986383
- I. Gargate and M. Gargate, Expressing matrices into products of commutators of involutions, skew-involutions, finite order and skew finite order matrices, https://arxiv.org/abs/2007.12305.
- I. Gargate and M. Gargate, Expressing upper triangular matrices as products of commutators of finite order elements, Linear Multilinear Algebra 70 (2022), no. 20, 5571-5579. https://doi.org/10.1080/03081087.2021.1920875
- K. R. Goodearl and P. Menal, Stable range one for rings with many units, J. Pure Appl. Algebra 54 (1988), no. 2-3, 261-287. https://doi.org/10.1016/0022-4049(88)90034-5
- L. Grunenfelder, T. Kosir, M. Omladic, and H. Radjavi, On groups generated by elements of prime order, Geom. Dedicata 75 (1999), no. 3, 317-332. https://doi.org/10.1023/A:1005123722362
- C. K. Gupta and W. Ho lubowski, Commutator subgroup of Vershik-Kerov group, Linear Algebra Appl. 436 (2012), no. 11, 4279-4284. https://doi.org/10.1016/j.laa.2012.01.032
- W. H. Gustafson, On products of involutions, in Paul Halmos Celebrating 50 Years of Mathematics, Springer-Verlag, New York, 1991.
- W. H. Gustafson, P. R. Halmos, and H. Radjavi, Products of involutions, Linear Algebra Appl. 13 (1976), no. 1-2, 157-162. https://doi.org/10.1016/0024-3795(76)90054-9
- P. Gvozdevsky, Commutator lengths in the general linear group over a division ring, J. Math. Sci. (N.Y.) 264 (2022), no. 1, 29-38; translated from Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 492 (2020), Voprosy Teorii Predstavlenii Algebr i Grupp. 35, 45-60.
- P. R. Halmos and S. Kakutani, Products of symmetries, Bull. Amer. Math. Soc. 64 (1958), 77-78. https://doi.org/10.1090/S0002-9904-1958-10156-1
- R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, Commutator width in Chevalley groups, Note Mat. 33 (2013), no. 1, 139-170. https://doi.org/10.1285/i15900932v33n1p139
- F. Hoffman and E. Paige, Products of two involutions in the general linear group, Indiana Univ. Math. J. 20 (1970), 1017-1020. https://doi.org/10.1512/iumj.1971.20.20096
- X. Hou, Decomposition of infinite matrices into products of commutators of involutions, Linear Algebra Appl. 563 (2019), 231-239. https://doi.org/10.1016/j.laa.2018.11.001
- X. Hou, S. Li, and Q. Zheng, Expressing infinite matrices over rings as products of involutions, Linear Algebra Appl. 532 (2017), 257-265. https://doi.org/10.1016/j.laa.2017.07.001
- H. Ishibashi, Involutary expressions for elements in GLn(Z) and SLn(Z), Linear Algebra Appl. 219 (1995), 165-177. https://doi.org/10.1016/0024-3795(93)00206-F
- H. Ishibashi, Factorization of elements in classical groups into a product of involutions, Int. J. Pure Appl. Math. 41 (2007), no. 4, 499-504.
- F. Knuppel, GL±n (R) is 5-reflectional, Abh. Math. Sem. Univ. Hamburg 61 (1991), 47-51. https://doi.org/10.1007/BF02950750
- F. Knuppel and K. Nielsen, SL(V ) is 4-reflectional, Geom. Dedicata 38 (1991), no. 3, 301-308. https://doi.org/10.1007/BF00181192
- T. J. Laffey, Products of Matrices, Generators and Relations in Groups and Geometries (1991), 95-123.
- T. J. Laffey, Expressing unipotent matrices over rings as products of involutions, Irish Math. Soc. Bull. No. 40 (1998), 24-30.
- K. M. Liu, Decomposition of matrices into three involutions, Linear Algebra Appl. 111 (1988), 1-24. https://doi.org/10.1016/0024-3795(88)90047-X
- A. J. Malcolm, The involution width of finite simple groups, J. Algebra 493 (2018), 297-340. https://doi.org/10.1016/j.jalgebra.2017.08.036
- T. Nakayama and Y. Matsushima, Uber die multiplikative Gruppe einer p-adischen Divisionsalgebra, Proc. Imp. Acad. Tokyo 19 (1943), 622-628. http://projecteuclid.org/euclid.pja/1195573246
- M. Newman, Unimodular commutators, Proc. Amer. Math. Soc. 101 (1987), no. 4, 605-609. https://doi.org/10.2307/2046655
- A. G. O'Farrell, Reversibility questions in groups arising in analysis, in Complex analysis and potential theory, 293-300, CRM Proc. Lecture Notes, 55, Amer. Math. Soc., Providence, RI, 2012. https://doi.org/10.1090/crmp/055/21
- B. B. Phadke, Products of reflections, Arch. Math. (Basel) 26 (1975), no. 6, 663-665. https://doi.org/10.1007/BF01229796
- A. R. Sampson, A note on a new matrix decomposition, Linear Algebra Appl. 8 (1974), 459-463. https://doi.org/10.1016/0024-3795(74)90079-2
- K. Shoda, Einige Stzeuber Matrizen, Jpn. J. Math. 13 (1937), no. 3, 361-365. https://doi.org/10.4099/jjm1924.13.0_361
- K. Shoda, Uber den Kommutator der Matrizen, J. Math. Soc. Japan 3 (1951), 78-81. https://doi.org/10.2969/jmsj/00310078
- A. S. Sivatski and A. V. Stepanov, On the word length of commutators in GLn(R), K-Theory 17 (1999), no. 4, 295-302. https://doi.org/10.1023/A:1007730801851
- R. S lowik, The lower central series of subgroups of the Vershik-Kerov group, Linear Algebra Appl. 436 (2012), no. 7, 2299-2310. https://doi.org/10.1016/j.laa.2011.08.047
- R. S lowik, Involutions in triangular groups, Linear Multilinear Algebra 61 (2013), no. 7, 909-916. https://doi.org/10.1080/03081087.2012.716432
- R. S lowik, Expressing infinite matrices as products of involutions, Linear Algebra Appl. 438 (2013), no. 1, 399-404. https://doi.org/10.1016/j.laa.2012.07.032
- R. S lowik, Bijective maps of infinite triangular and unitriangular matrices preserving commutators, Linear Multilinear Algebra 61 (2013), no. 8, 1028-1040. https://doi.org/10.1080/03081087.2012.728214
- R. S lowik, On products of matrices of a fixed order, Linear Algebra Appl. 446 (2014), 104-114. https://doi.org/10.1016/j.laa.2013.12.033
- R. S lowik, More about involutions in the group of almost-Riordan arrays, Linear Algebra Appl. 624 (2021), 247-258. https://doi.org/10.1016/j.laa.2021.04.016
- T. N. Son, T. H. Dung, N. T. T. Ha, and M. H. Bien, On decompositions of matrices into products of commutators of involutions, Electron. J. Linear Algebra 38 (2022), 123-130. https://doi.org/10.13001/ela.2022.6797
- A. R. Sourour, A factorization theorem for matrices, Linear and Multilinear Algebra 19 (1986), no. 2, 141-147. https://doi.org/10.1080/03081088608817711
- A. Stepanov and N. Vavilov, Decomposition of transvections: a theme with variations, K-Theory 19 (2000), no. 2, 109-153. https://doi.org/10.1023/A:1007853629389
- A. A. Suslin and M. S. TuLenbaev, Stabilization theorem for the Milnor K2-functor, J. Soviet Math. 17 (1981), no. 2, 1804-1819. https://doi.org/10.1007/BF01091768
- R. C. Thompson, Commutators in the special and general linear groups, Trans. Amer. Math. Soc. 101 (1961), 16-33. https://doi.org/10.2307/1993409
- L. N. Vaserstein and E. Wheland, Commutators and companion matrices over rings of stable rank 1, Linear Algebra Appl. 142 (1990), 263-277. https://doi.org/10.1016/0024-3795(90)90270-M
- W. C. Waterhouse, Solutions of advanced problems: 5876, Amer. Math. Monthly 81 (1974), no. 9, 1035.
- M. Wonenburger Planells, Transformations which are products of two involutions, J. Math. Mech. 16 (1966), 327-338. https://doi.org/10.1512/iumj.1967.16.16023
- H. You, Products of involutory matrices with determinant 1 over rings, Northeast. Math. J. 14 (1998), no. 4, 435-439.
- H. You and S. Chen, Products of commutators of dilatations, Linear Algebra Appl. 291 (1999), no. 1-3, 51-61. https://doi.org/10.1016/S0024-3795(98)10222-7
- B. Zheng, Decomposition of matrices into commutators of involutions, Linear Algebra Appl. 347 (2002), 1-7. https://doi.org/10.1016/S0024-3795(01)00597-3