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A SURVEY OF LENGTHS OF LINEAR GROUPS WITH

RESPECT TO CERTAIN GENERATING SETS

Nguyen Thi Thai Ha

Abstract. In this paper, we summarise and present results on involution

lengths and commutator lengths of certain linear groups such as special
linear groups, projective linear groups, upper triangle matrix groups and

Vershik-Kerov groups. Some open problems motivated by these results
are also proposed.

1. Introduction

One of the classical problems in group theory is to seek and evaluate the
length of a group with respect to generating sets. First, we recall the definition
of the length of a group with respect to certain generating sets. Let G be
a group with generator set X. For every element g ∈ G \ {1}, the smallest
positive integer k such that g can be written as g = gϵ11 gϵ22 · · · gϵkk with elements
g1, g2, . . . , gk ∈ X and ϵi = ±1 is called the length of the element g ∈ G with
respect to X, denoted by ℓX(g). We use the convention that ℓX(1) = 0. The
length ℓX(G) of a group G with respect to X is the supremum of {ℓX(g) : g ∈
G}.

The problem of evaluating ℓX(G) has attracted a lot of attention, especially
when G is one of the classical-like groups. There have been hundreds of papers
addressing this problem in the case when the generating set X is either the set
of elementary transvections, the set of all transvections or ESD-transvections,
the set of all unipotents, the set of all reflections or pseudo-reflections, the set of
a non-central conjugacy class, or the set of all commutators. More specifically,
see transvections in [32, 51, 60, 61]; reflections in [21] and [47] and dilatations
in [16] and [67]. In this survey we focus on the lengths of matrices in linear
groups, where X is one of the sets of involutions, commutators of involutions,
or commutators. In this survey, we use the symbols I, CI, and C for the set
of all involutions, commutators of involutions and commutators of the groups
which are considered respect to the context, respectively.
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This article is organized as follows. In Section 2, we present results on
the lengths of groups with respect to the set of involutions, which is the set
of matrices of order 2. It is shown that the square of the determinant of a
product of involutions is always equal to 1. Therefore, to seek and evaluate
the involution lengths of matrices of the linear groups over rings, one considers
matrices whose determinants are equal to 1 or satisfy property, such as the
special linear groups, the upper unitriangular matrix groups. Moreover, one
can also classify matrices based on the involution lengths. In particular, there
are many interesting results when considering matrices over fields. One of them
is the necessary and sufficient condition for a matrix with determinant ±1 to
be expressible as a product of involutions. Furthermore, a matrix is similar to
its own inverse if and only if it can be written as a product of two involutions.
More specifically, we also present the necessary and sufficient condition for a
matrix with determinant 1 to be a product of three involutions. Some of these
properties hold true for stable generalized linear groups over a field. We also
mention some recent results over division rings. At the end of this section, we
present some results on decompositions of matrices into products of matrices
of finite order.

Note that a commutator of involutions is also a product of two involutions.
In Section 3, we shall mention the lengths of the matrices with respect to the
set of commutators of involutions. This topic is started by B. Zheng’s results
shown in 2002 (see [68]). More specifically, in [68], Zheng considered square
matrices of size n ≥ 2 over the real or complex number field. After these nice
results of Zheng, some generalized results for arbitrary fields, associative rings,
division rings are studied. At the end of this section are results on the lengths
of commutators of matrices whose orders are finite.

In this paper, a ring R is assumed to be associative with unity 1 ̸= 0. For
a positive integer n, let GLn(R) be the group of invertible n× n matrices over
R. By ±SLn(R) and SLn(R) the subgroups of GLn(R) consisting of matrices
of determinant ±1 and 1, respectively. In fact, all rings R we consider are
either commutative rings or division rings. Over division rings, the determinant
of a matrix of size n ≥ 2 is understood to be the Dieudonne determinant
(for a detailed definition, see [14]). If D is a division ring, then SLn(D) is a
commutator subgroup of GLn(D). Recently, it was shown that if D is a division
ring and n a positive integer greater than 1, then ±SLn(D) is a subgroup
generated by involutions in GLn(D) (see [6, Corrollary 2.4]). Furthermore,
SLn(D) is equal to the subgroup generated by commutators of involutions
except in the case when n = 2 and D is a field of two elements. Hence, we have
the inclusion

SLn(D) = [GLn(D),GLn(D)] ⊂ ±SLn(D) =
〈
I
〉

in which the notation I is the set of involutions in SLn(D).
From these reasons, in Section 4 we rewrite some results concerning the com-

mutator lengths of linear groups and focus mainly on the results that had been
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proven after 1989, especially those over division rings. Readers can follow the
results on the commutator lengths before 1989 in a short survey by Vaserstein
and Wheland (see [63]).

From these results, in Section 5, we shall present some open problems in-
spired by the preceding sections.

2. Involution length

2.1. Involution length of matrices over rings

We recall that an involution of a group is an element of order 2. In this
section, we use the notation I to represent the set of all involutions of the
groups which is considered respect to the context. The decompositions of
matrices into products of involutions are noticed over particular rings. The
first result in this direction was proved by Waterhouse in 1972 which stated
that every elementary matrix over rings R can be written as a product of two
involutions [64]. Namely, denote by eij a matrix of size n with only 1 in position
(i, j) and the remaining positions are equal to 0. For any positive integers i ̸= j
and a ∈ R, then

In + aeij = (In + eij − 2ejj)(In + (a + 1)eij − 2ejj),

where b ∈ R and In +beij−2ejj are involutions. In 1991, Gustafson [28, p. 251]
showed that if the diagonal matrix D = diag(d1, d2, . . . , dn) such that d2m = 1
and di + dj = dk + dl = 0, then

(In + aeij)(In + aekl) = [(In + aeij)D][D(In + bekl)],

where n,m, i, j, k, l are positive integers such that 1 ≤ m ≤ n.
This leads to a product of two elementary matrices to be also a product of

two involutions. This result is used by many authors such as [36, 41]. Notice
that according to [10, Main Theorem], every matrix in SLn(Z) can be written
as a product of at most 1

2 (3n2 − n) + 36 elementary matrices provided n ≥ 3.
In particular, this product is bounded by 48 when n = 3. Hence, an arbitrary
matrix in SLn(Z) is a product of at most 1

2 (3n2 − n) + 37 involutions and at
most 48 involutions in the case of n = 3 (we will find out that the number 48
is significant when we consider next results). In 1995, by using the results of
decompositions of matrices into products of elementary matrices, H. Ishibashi
improved this result. Observe that a matrix over an arbitrary commutative ring
is invertible if and only if its determinant is invertible and invertible elements
over Z are just ±1, so GLn(Z) = ±SLn(Z). H. Ishibashi proved the following
theorem.

Theorem 1 ([36, Theorems 1 and 2]). Let n be a positive integer greater than
three. Then, the following statements are true.

(a) ℓI(GLn(Z)) ≤ 3n + 9.
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(b) If n is odd, then every matrix in SLn(Z) can be decomposed into products
of at most 3n + 9 involutions in SLn(Z). Otherwise, the number of
involutions in this decomposition is 3n + 11.

In 1998, Laffey showed the involution length of GLn(Z) does not depend on
n, as shown the following result.

Theorem 2 ([41, Theorem 2]). Let n be an integer. If n ≥ 3, then ℓI(GLn(Z))
≤ 48. Furthermore, if n ≥ 82, then ℓI(GLn(Z)) ≤ 41.

Next, we mention some results on linear groups over rings satisfying the first
Bass stable range condition. Recall that a ring R satisfies the first Bass stable
range condition provided that whenever Ra+Rb = R for a, b ∈ R, there exists
c ∈ R such that R(a + cb) = R. In this case, we write sr(R) ≤ 1. For basic
properties of rings satisfying the first Bass stable range condition, we refer to
[8] and [25]. In particular, it is shown that if R is either a Noetherian ring or
a semilocal ring, then sr(R) ≤ 1.

For a ring R, a matrix A in GLn(R) is called cyclic if there exists a column
vector v such that v,Av, . . . , An−1v form a basis of the vector space Rn of all
n-tuples over R written as columns. Assume that f(x) = xn + an−1x

n−1 +
· · · + a0 ∈ R[x] is a monic polynomial in one variable x with coefficients in R.
A companion matrix of f(x) is an n × n square matrix with ones along the
line just below and parallel to the main diagonal, the last column given by the
coefficients a0, a1, . . . , an−1 and zeros elsewhere. It is known that a matrix is
cyclic if and only if it is similar to a companion matrix (see [2] and [63]).

We consider the results on the decompositions of matrices by R. Dennis and
L. Vasersteins [12] in 1988. Although these authors do not explicitly address
involution lengths and commutator lengths, their findings have been used to
estimate these lengths. In [12, Lemma 9], R. Dennis and L. Vaserstein showed
that if the ring R satisfies the property sr(R) ≤ 1, then every matrix in GLn(R)
can be written as a product of four triangular matrices. This result was ex-
tended in 1990 by L. N. Vaserstein and E. Wheland [63], and they evaluated the
number of triangular matrices in such decompositions to be three. Moreover,
every matrix in GLn(R) is similar to a product of two triangular matrices. For
the convenience of the readers, we restate the following two results.

Lemma 3 ([63, Theorem 1]). Let R be a ring such that sr(R) ≤ 1 and
A ∈ GLn(R). Then, there exist lower triangular matrices B,C and an up-
per triangular matrix X such that A = BXC. Therefore, A is similar to a
product of an upper triangular matrix and a lower triangular matrix.

Lemma 4 ([63, Theorem 2]). Let R be a ring such that sr(R) ≤ 1, A and
B ∈ GLn(R), where B is an arbitrary companion matrix. Then:

(a) A is a product of two cyclic matrices.
(b) There exists a matrix X that is similar to B and a cyclic matrix Y such

that A = XY .
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Using the above decompositions, many authors can seek and evaluate the
involution lengths of matrices. We shall start with a result of F. Knüppel
published in 1991.

Theorem 5 ([38, Theorem A]). Let R be a commutative ring such that sr(R) ≤
1. Then, every matrix in ±SLn(R) is a product of five involutions in ±SLn(R).

Theorem 5 was extended by F. A. Arlinghaus et al. in 1995 [2].

Theorem 6 ([2, Theorems 7 and 8]). Let R be a commutative ring such that
sr(R) ≤ 1. Let A ∈ GLn(R) such that (detA)2 = 1. Then:

(a) A can be written as a product of at most five involutions.
(b) In addition, if n ≤ 3 or n = 4 and detA = −1, then A can be written as

a product of at most four involutions.

Moreover, F. A. Arlinghaus et al. in [2, Theorem 13] showed that if R = F [x]
in which F is the field of complex numbers or an arbitrary field of infinite
transcendence degree over its prime field of characteristic different from 2, then
ℓI(GLn(R)) = ∞ provided n ≥ 2. It means that there exists a ring R such
that the involution length of ℓI(GLn(R)) is not bounded.

In 1998, H. You [66] studied involution lengths of cyclic matrices.

Theorem 7 ([66, Theorems 1 and 3]). Let R be a commutative ring and n ≥ 3.
Then:

(a) Every cyclic matrix in SLn(R) can be written as a product of three invo-
lutions in SLn(R).

(b) If sr(R) ≤ 1, then each matrix in SLn(R) can be written as a product of
the six involutions in SLn(R). Furthermore, this result is reduced to five
involutions if n ̸= 2 (mod 4).

In fact, the version of Theorem 7(a) over fields was stated by Ballantine
[3, Theorem 2] in 1977.

Next, we consider the involution lengths of subgroups of ±SLn(R). Denote
by Tn(R) (resp., T∞(R)) the groups of upper triangular matrices of size n
(resp., the groups of upper triangular matrices of infinite size). Let us denote
by UTn(R) (resp., UT∞(R)) the subgroups of Tn(R) (resp.,T∞(R)) consisting
of all upper triangular matrices whose diagonal entries are 1. The subgroups
of Tn(R) and T∞(R) consisting of all upper triangular matrices whose diago-
nal entries are ±1 is denoted by ±UTn(R) and ±UT∞(R), respectively. The
subgroup of GLn(R) consisting of all lower triangular matrices whose diagonal
entries are 1 is denoted by LTn(R).

In 1998, Laffey [41, Theorem 1] showed that over an arbitrary ring R, every
matrix in UTn(R) is a product of ten involutions. In 2013, S lowik [54] showed
that if F is a field, then each matrix in ±UT∞(F ) can be written as a product
of at most five involutions. Moreover, if the characteristic of F is different
from 2, then such decomposition is just a product of four involutions (see
[54, Theorems 1.1 and 1.2]). The same year, S lowik showed the necessary and
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sufficient condition for matrices in T∞(F ) and Tn(F ) to be an involution (see
[53, Theorem 1.1]). The same result is showed for lower triangular matrices (see
[57, p. 250]). In 2017, X. Hou showed that S lowik’s decompositions contained an
identity matrix in the proof of [54, Theorem 1.1] for the case the characteristic
of F is 2. Therefore, if F is a field, then every matrix in ±UT∞(F ) can be
written as a product of at most four involutions. Moreover, in the case when
R is an arbitrary ring, X. Hou et al. [35] evaluated the involution lengths of
matrices in UTn(R).

Theorem 8 ([35, Theorem 1.1]). Let R be a ring. Then, every matrix in the
groups ±UTn(R) (resp. ±UT∞(R)) can be written as a product of at most four
involutions in ± UTn(R) (resp. ±UT∞(R)).

2.2. Involution lengths of matrices over fields

We denote by F an arbitrary field throughout this subsection. We first
explore the theorem considered the standard for the decompositions of matrices
into a product of two involutions in the linear groups over fields.

Theorem 9. Let F be a field and A ∈ GLn(F ). Then, A is similar to A−1 if
and only if A can be written as a product of two involutions.

Theorem 9 was first showed in 1966 for the case when F is the complex
field (see [65, Theorem 1]). In 1967, D. Ž. Djoković [15] extended this theo-
rem to arbitrary fields. Then, F. Hoffman and E. Paige [33] also proved this
result in 1971, by using companion matrices and minimal polynomials. In
2007, Theorem 9 was also proven by Ishibashi in [37, Theorem 2] by using
the uniqueness of the invariant factors (the detailed definition below). This
result does not hold for arbitrary rings, even if for division rings (see [20]).
For example, consider the following matrices over the real quaternion division
ring H. Recall that H = R1 ⊕ Ri ⊕ Rj ⊕ Rk, with multiplication defined by
i2 = j2 = k2 = −1 and ij = −ji = k, jk = −kj = i, ki = −ik = j. Put
A = ( i 0

0 1 ) and P =
(
j 0
0 1

)
, it is easy to see that A = PA−1P−1 and detA = i.

Because (detA)2 = i2 = −1 ̸= 1, so A can not be written as a product of two
involutions.

Next, we present results on the group ±SLn(F ). In 1974, Sampson showed
that every matrix over the real number field can be written as a product of
involutions provided its determinant is ±1 (see [48, Theorem 1]). In 1976,
Gustafson, Halmos, and Radjavi [29] extended the results for arbitrary fields.

Theorem 10 ([29, Theorem]). Let F be a field and A ∈ ±SLn(F ). Then, A
is a product of at most 4 involutions, i.e., ℓI(A) ≤ 4. Furthermore, 4 is the
smallest number that satisfies.

In fact, Gustafson, Halmos, and Radjavi knew that the number 4 is the
smallest number satisfying Theorem 10 in 1958 (see the proof of [31, Theorem
2]). Namely, they showed that if u is in the center of G such that u = xyz in
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which x2 = y2 = z2 = 1, then u4 = uxuyuz = u(xu)y(uz) = u(yz)y(xy) =
y(uz)y(xy) = yxyyxy = 1. Many authors have also proved Theorem 10 in
different ways. In 1986, Sourour [59, Theorem 5] showed a shorter proof for
the case when F is a field containing at least n + 2 elements and n is the
order of matrices. In 1991, Laffey also showed this theorem, where F is a
field of characteristic different from 2 (see [40, Corollary 2.2]). In 2009, Botha
also proved this theorem without limiting the number of elements of fields (see
[9, Theorem 6]).

To explore results on the decompositions of matrices into products of three
involutions we recall the following definitions. The geometric multiplicity is
defined as the dimension of the subspace spanned by the eigenvectors associated
with the eigenvalue. Let A be a matrix in GLn(F ). If there exist matrices U
and V in GLn(F ) such that UAV = diag(αn, αn−1, . . . , α1), where αn | αn−1 |
· · · | α1, then αn, αn−1, . . . , α1 are the invariant factors of A. Starting from
Ballantine’s results [3] published in 1977.

Proposition 11 ([3, Fact 4]). Let F be a field. Assume that A is a product of
three involutions in GLn(F ). Then, the geometric multiplicity of λ is at most
3
4n, in which λ is an eigenvalue of A satisfying λ4 ̸= 1.

Furthermore, Ballantine [3] also showed the necessary and sufficient condi-
tion for the involution length of ±SLn(F ) to be three.

Theorem 12 ([3, Fact 5]). Let F be a field and n be a positive integer. Then
ℓI(±SLn(F )) = 3 if and only if at least one of the followings is satisfied.

(a) n ≤ 2.
(b) The order of F is 2, 3, or 5.
(c) n = 3 and either characteristic of F is three or x2 + x + 1 is irreducible

in F [x].
(d) n = 4 and characteristic of F is 2.

Moreover, Ballantine [3] proved that every matrix in ±SLn(F ) having ex-
actly two invariant factors is a product of three involutions. In 2019, this re-
sult was extended by reducing one invariant factor (see [11, Proposition 3.7]).
Proposition 11 was extended by Liu for the case when F is the complex number
field in 1988 (see [42, Theorems 2.5 and 3.1]).

In 1991, F. Knüppel and K. Nielsen strengthened Theorem 12 by showing
the necessary and sufficient condition for matrices in SLn(F ) to be a product
of three involutions in SLn(F ).

Theorem 13 ([39, Theorem B]). Let F be a field and n ̸= 2. Then, each
matrix in SLn(F ) is a product of three involutions in SLn(F ) if and only if at
least one of the following cases is satisfied.

(a) n = 1 or n = 4.
(b) The order of F is 2, 3, or 5 and n ̸= 2 (mod 4).
(c) n = 3 and either characteristic of F is 3 or x2 + x+ 1 are irreducible in

F [x].
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Next, we present results on the involution lengths of matrices of the projec-
tive special linear groups. We denote by PSLn(F ) the projective special linear
group, which obtained from the special linear group SLn(F ) on factoring by
the scalar matrices contained in this group.

Starting in 1999, Ambrosievicz [1, Theorem 5(a)] showed that if F is a field of
characteristic different from 2 and −1 is a square, then every matrix in PSL2(F )
is a product of two involutions. Then, Malcolm evaluated the involution length
of PSLn(F ) in case F is a finite field.

Theorem 14 ([43, Corollary 3.7]). Let F be a finite field of order m and n
be an integer greater than one, except n = 2 and m is equal to either 2 or 3.
Then,

(a) ℓI(PSLn(F )) = 2 if and only if n = 2 and m ̸= 3 (mod 4).
(b) ℓI(PSLn(F )) ≤ 4.

There are interesting results on the decompositions of augmented matrices
into products of three involutions over fields. Recall that every augmented
matrix has the form

A⊕ Im :=

(
A 0
0 Im

)
for A ∈ GLn(F ) and m ≥ 1. The following lemma is easy to see, we omit the
proof.

Lemma 15. Let F be a field and A ∈ GLn(F ). Then, ℓI(A ⊕ Im) ≤ ℓI(A)
with m and n are positive integers.

We consider some cases with “=” sign. The case m = 0 is obvious. The sign
“=” also holds for the case when A is similar to A−1 according to Theorem 9.
Next, we find a case to show that ℓI(A⊕ Im) < ℓI(A). Consider A = 5I3 over
the field Z7. Because detA = −1̄, according to Theorem 10 the matrix A can
be rewritten as a product of at most four involutions. Since A−1 = 3I3 ̸= A,
A is not an involution. Furthermore, A is not similar to A−1, so A is not
a product of two involutions by Theorem 9. Moreover, A4 = 2I3 ̸= In and
A is noncentral, by [31] the matrix A is not a product of three involutions.
Therefore, A is a product of exactly four involutions. On the other hand,
according to [11, Lemma 5.9(ii)] A⊕ I3 is a product of three involutions.

Next, we shall explore a result on the involution lengths of augmented ma-
trices.

Theorem 16 ([11, Theorem 1.7]). Let F be a field and A ∈ ±SLn(F ). Then,
A⊕ In is a product of at most three involutions in GL2n(F ).

According to Lemma 15 and Theorem 16, we can deduce that if A ∈
±SLn(F ), then A ⊕ Im ∈ GLn+m(F ) is a product of at most three invo-
lutions for m ≥ n. This does not hold provided m < n. For example,
consider B = 2I3 ∈ SL3(Z7). By the same arguments as above, we obtain
B ⊕ I2 ∈ SL5(Z7) is neither an involution nor a product of two involutions.
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Furthermore, by Theorem 13 the matrix B ⊕ I2 ∈ SL5(Z7) is not a product of
three involutions. Therefore, the matrix B ⊕ I2 can be written as a product of
exactly four involutions.

The following are some results on the decompositions of matrices in the
stable general linear groups. For convenience, we recall the definition of this
group. Let R be an arbitrary ring, the direct limit GL∞(R) = lim−→ GLn(R) with

respect to the transition homomorphisms GLn(R) → GLn+1(R) by A 7→ ( A 0
0 1 )

is called the stable general linear group over R.
The following shows that Theorem 9 and Theorem 10 also hold for aug-

mented matrices.

Theorem 17 ([11, Theorem 1.1]). Let F be a field and A ∈ GL∞(F ). Then:

(a) A is a product of two involutions if and only if A is similar to its inverse.
(b) A is a product of three involutions if and only if det(A) = ±1.

We shall explore the involution lengths of matrices of a Vershik-Kerov sub-
group over fields. Recall that the Vershik-Kerov group consisting of all matrices
in which the set of nonzero entries below the main diagonal is finite, denoted
by GLV K,∞(F ). That means if A ∈ GLV K,∞(F ), then A =

(
A1 A2

0 A3

)
, where

A1 ∈ GLn(F ), A3 ∈ T∞(F ) and A2 has the size n×N (see [4] for more details).
In 2013, S lowik studied the subgroup of the Vershik-Kerov group consisting

of matrices of the form A =
(
A1 A2

0 A3

)
in which A1 ∈ ±SLn(F ) and A3 ∈

±UT∞(F ), is denoted by ±SLV K,∞(F ). According to [54, Corollary 4.1], each
matrix in ±SLV K,∞(F ) is a product of at most six involutions over arbitrary
fields, and a product of at most five involutions when characteristic of F is
different from 2. Based on S lowik’s arguments in [54] and X. Hou’s result in
[35], we have the following results.

Theorem 18. Let F be a field. Then, each matrix in ±SLV K,∞(F ) can be
written as a product of at most five involutions in ±SLV K,∞(F ).

Proof. Let A be an arbitrary matrix in ±SLV K,∞(F ). We have A =
(
A1 A2

0 A3

)
,

with A1 ∈ ±SLn(F ) and A3 ∈ ±UT∞(F ). Put x =
(

−In A2A
−1
3

0 I∞

)
and

y =
(−A1 0

0 A3

)
, then A = xy. By Theorem 8, A3 is a product of at most

four involutions in ±UT∞(F ) and by Theorem 10, −A1 is also a product of
at most four involutions in ±SLn(F ), so is y. Furthermore, x is an involu-
tion. Therefore, A can be written as a product of at most five involutions in
±SLV K,∞(F ). □

Note that a commutator of involutions is a product of two involutions. By
[34, Theorem 1.3], we see the decomposition of matrices into involutions in
SLV K,∞(F ).

Theorem 19. Assume F is a field of characteristic different from 2. Then,
every matrix in SLV K,∞(F ) can be expressed as a product of at most four
involutions.
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Can each matrix in ±SLV K,∞(F ) be written as a product of four involutions?
Will Theorem 19 be true for a field of characteristic 2? We can expect continued
efforts in this area and new directions to be explored.

2.3. Involution lengths of matrices over division rings

Let D be a division ring. We write D∗ = D \ {0} and D′ = [D∗, D∗], which
is a commutator subgroup of D throughout the paper.

In 1974, the decompositions of matrices of ±SLn(D) into a product of in-
volutions are verified by W. C. Waterhouse in [64]. Recently M. H. Bien et
al. [6, Lemma 2.6] showed that SLn(D) is generated by matrices which are
similar to ( 1 1

0 1 ) ⊕ In−2. Furthermore, in [6, Corollary 2.4] the authors showed
that

〈
I
〉

= {A ∈ GLn(D) : detA = ±1}. In addition, the involution lengths of
matrices in ±UTn(D) and ±LTn(D) are also shown. The following are specific
results.

Theorem 20 ([6, Lemma 4.3]). If D is a division ring and n ≥ 2, then every
matrix in ±UTn(D) and ±LTn(D) can be written as a product of at most two
involutions in ±UTn(D) and ±LTn(D), respectively.

Furthermore, in [6, Section 3] the authors showed that there exists a division
ring D such that ℓI(SLn(D)) = ∞. This result was built over the Mal’cev-
Newmann division ring. Moreover, the version of Theorem 10 was shown over
division rings.

Theorem 21 ([6, Theorem 4.5]). Let D be a division ring such that ℓC(D′) <
∞. Assume that A ∈ ±SLn(D). Then, ℓI(A) ≤ 4 + 4ℓC(D′).

Moreover, there was a better evaluation for a finite-dimensional division ring.

Theorem 22 ([6, Theorem 5.3]). Let D be a non-commutative finite-dimen-
sional division ring and n ≥ 2. Assume that ℓC(D′) < ∞.

(a) If A is noncentral and detA = 1, then ℓI(A) ≤ 4ℓC(D′).
(b) If detA = ±1, then ℓI(A) ≤ 2 + 4ℓC(D′).

In particular, in the case of division rings with dimensions less than five.

Theorem 23 ([6, Corollary 5.5]). Let D be a division ring with center F such
that dimFD < 5. Assume that A ∈ GLn(D). If detA = ±1, then ℓI(A) ≤ 4.

Recently, the decompositions of matrices into products of matrices whose
orders are finite has been of interest. Next, we consider these results.

2.4. Decomposition of matrices into products of matrices whose or-
ders are finite

First, we explore groups generated by matrices of fixed prime order p over a
field F containing a primitive pth root of 1. In 1999, Grunenfelder et al. proved
that the groups PSLn(F ) and SLn(F ) are generated by their matrices of order
p (see in [26, Examples 2.8]). According to [26, Theorem 5.1] if every matrix
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A satisfying (detA)p = 1, then A = B1B2B3B4, where B1, B2, B3, B4 are
matrices of order p with (detBi)

p = 1. In Section 1, we knew this was also
true for arbitrary fields if p = 2. In addition, Grunenfelder [26] decomposed
matrices into products of matrices of finite order in the special linear groups.

Theorem 24 ([26, Theorem 5.4]). Let p be a prime number and F be a field
containing a primitive pth root of 1. Then, every matrix in SLn(F ) can be
expressed as a product of four matrices of order p in SLn(F ).

In particular, Theorem 24 holds if matrices are in the group T
(p)
n (F ), the

group consists of upper triangular matrices with main diagonal entries in the
set {1, θ, θ2, . . . , θn−1}.

In 2004, S lowik studied decompositions of upper triangle matrices into prod-
ucts of matrices whose orders are finite (see [56]). Especially, if F is a field of
order k, then T∞(F ) and Tn(F ) are generated by all their matrices of order
k − 1 where k ≥ 3.

Theorem 25 ([56, Theorems 1.2 and 1.3]). Assume F is a field containing k
elements and k ≥ 3. Then:

(a) Every matrix in T∞(F ) and Tn(F ) can be written as a product of at
most four triangular matrices whose orders are divisors of k − 1.

(b) Every matrix in GLn(F ) can be written as a product of at most twelve
triangular matrices whose orders divide by k − 1.

Recall that, let a and b be arbitrary two elements in group G. Commutator
[a, b] is defined by [a, b] = aba−1b−1. If a, b are involutions, then [a, b] is called
a commutator of involutions. It is known that a commutator of involutions is
a product of two involutions. Hence, we shall consider the decompositions of
matrices into commutators of involutions.

3. Length of linear groups with respect to the set of commutators
of involutions

3.1. Decompositions of matrices in linear groups over fields into com-
mutators of involutions

Starting in 2002, B. Zheng studied decompositions of matrices in linear
groups over fields whose characteristics are different from 2.

Lemma 26 ([68, Lemma 7]). If F is a field of characteristic different from 2,
then every matrix in UTn(F ) (resp., LTn(F )) is a commutator of involutions.

According to [59, Theorem 1] every nonscalar matrix in SLn(F ) can be
written as a product BC such that B and C are similar to matrices in UTn(F )
and LTn(F ), respectively. Hence, if the characteristic of F is different from
2, then every nonscalar matrix in SLn(F ) is a product of two involutions,
and two is the smallest such number. Because every scalar matrix can be
written as a product of a nonscalar matrix and a commutator of involutions, the
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decompositions of arbitrary matrices in SLn(F ) into commutators of involutions
can be evaluated.

Theorem 27 ([68]). Assume F is a field.

(a) If F has characteristic different from 2, then ℓCI(SLn(F )) ≤ 3.
(b) If F is the real or complex number field, then ℓCI(SLn(F )) ≤ 2, and two

are the smallest such number.

In 2018, X. Hou improved B. Zheng’s results in [68]. Namely, in [34, Theorem
2.8], the author showed that if F is a field of characteristic different from 2, then
every matrix in SLn(F ) is a product of at most two commutators of involutions.
In 2022, Son et al. showed that the result also holds for fields of characteristic
2 (see [58, Theorem 1]). Hence, the following is the general result.

Theorem 28. Let F be an arbitrary field containing more than two elements
and n ≥ 2. Then, ℓCI(SLn(F )) ≤ 2.

Then, X. Hou [34] improved S lowik’s results, which we mentioned in Theo-
rem 18.

Theorem 29 ([34, Theorem 1.3]). Let F be a field of characteristic different
from 2. Then, every matrix in SLV K,∞(F ) can be written as a product of at
most two commutators of involutions.

Moreover, X. Hou [34] mentioned a result on the upper triangular matrices
group over arbitrary rings.

Theorem 30 ([34, Theorem 1.1]). Let R be a ring and 2 be an invertible
element. Then, every matrix in UT∞(R) (resp., UTn(R)) can be written as a
product of at most two commutators of involutions in T∞(R) (resp., Tn(R)).

3.2. Decomposition of matrices in linear groups over division rings
into commutators of involutions

Let D be a division ring. Recall that D∗ = D\{0} and D′ = [D∗, D∗], where
D′ is the commutator subgroup of D. Recently, in [5] and [6], M. H. Bien et
al. evaluated the length of matrices with respect to the set of commutators of
involutions over division rings, by starting with a finite-dimensional division
ring D, then decomposing every matrix in SLn(D) into a product XY Z, where
X ∈ LTn(D), Y ∈ UTn(D) and a matrix diagonal Z has its (n, n)-th element
in D′. According to [5], XY is a product of at most two commutators of
involutions, and Z is a product of at most six commutators of involutions.

Theorem 31 ([5, Theorem 4.6]). Let D be a finite-dimensional division ring
such that ℓC(D′) < ∞ and n ≥ 2 be a positive integer. Then,

(a) ℓCI(SLn(D)) ≤ 2 + 3ℓC(D′) if charD ̸= 2 or charD = 2 and n ≥ 3.
(b) ℓCI(SLn(D)) ≤ 2 + 6ℓC(D′) if charD = 2 and n = 2.
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Then, in [6, Proposition 3.5] the authors showed that there exists a division
ring D, where ℓCI(SLn(D)) is infinite. In [6] the decompositions of matrices in
UTn(D) into commutators of involutions are estimated. Namely, if the charac-
teristic of D is different from 2, then every matrix in UTn(D) is a commutator
of involutions in GLn(D). Otherwise, the number of commutators of involu-
tions in this decomposition is two if the characteristic of D is 2. Furthermore,
the authors sought and evaluated this decomposition over an arbitrary division
rings.

Theorem 32 ([6, Theorem 6.3]). Let D be a division ring and n ≥ 2 be a
positive integer. Assume that ℓC(D′) < ∞. Then,

(a) ℓCI(SLn(D)) ≤ 6ℓC(D′) + 4 if charD = 2 and n = 2.
(b) ℓCI(SLn(D)) ≤ 3ℓC(D′) + 4 if charD = 2 and n > 2.
(c) ℓCI(SLn(D)) ≤ 3ℓC(D′) + 2 if charD ̸= 2.

As we have mentioned, some authors have generalized decompositions of
matrices into commutators of involutions by decompositions of matrices into
products of commutators of matrices whose orders are finite, such as [23], [24]
and [56]. Next, we shall restate these results.

3.3. Decompositions of matrices into commutators of matrices whose
orders are finite

In 2021, I. Gargate and M. Gargate studied decompositions of matrices in
UT∞(R) and UTn(R) into commutators of matrices of finite orders (see [24]).
For the convenience of readers, we shall use notations used in original articles.
Put

UT(k)
n (R) = {A ∈ Tn(R) : akii = 1 for all 1 ≤ i ≤ n},

UT(k)
∞ (R) = {A ∈ T∞(R) : akii = 1 for all 1 ≤ i ≤ n}.

In Theorem 30, X. Hou decomposed matrices in UTn(R) (resp., UT∞(R)) into
a product of commutators of involutions for the case R is a ring containing 2
which is the invertible element. The following is decompositions of matrices
in UTn(R) (resp., UT∞(R)) into a product of commutator of matrices whose
order are finite.

Theorem 33 ([24, Theorem 1.1]). Let R be a commutative ring and k ≥ 2 be
a positive integer. Assume that 1 + 1 + · · · + 1 = k is an invertible element of
R. Then, every matrix in UT∞(R) (resp. UTn(R)) can be written as a product
of at most 4k − 6 commutators of matrices, which depend on two matrices of

order k in UT(k)
∞ (R) (resp. UT(k)

n (R)).

For the real or complex number field F , B. Zheng in [68] decomposed ma-
trices in SLn(F ) into a product of commutators of involutions. [23, Theorem
1.5.3] and [24, Theorem 1.2] are an extension of Zheng’s result.
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Theorem 34 ([23, 24]). Let F be the real or complex number field and k ≥ 2
be a positive integer. Then:

(a) If F is the complex number field, then every matrix in SLn(F ) can be
written as a product of at most 4k− 6 commutators of matrices of order

k in UT(k)
n (F ).

(b) Every every matrix in SLn(F ) can be represented as a product of at most
4k− 6 commutators of matrices, which depend on two matrices of order
k in GLn(F ).

The next result is an extension of Theorem 18 for the case when F is the
real or complex number field.

Theorem 35 ([24, Theorem 1.3]). Let F be the real or complex number field
and k ≥ 2. Then, every matrix in SLV K,∞(F ) can be written as a product
of at most 4k − 6 commutator, all depending on two matrices of order k in
GLV K,∞(F ).

As we mentioned, we shall explore results on the commutator lengths of
linear groups in Section 4.

4. Commutator lengths of matrices

4.1. Commutator lengths of linear groups over fields

It is known that a product of commutators in an arbitrary group is not
necessarily a commutator. An interesting example of this was presented by
W. B. Fite [22] in 1902.

In particular, the author built a group G such that |G| = 256 and |G′| = 16
and only 15 elements in G′ are commutators. In 1936, Shoda studied the de-
compositions of matrices into commutators in linear groups. Namely, Shoda
showed that over algebraically closed fields F every matrix in SLn(F ) is a com-
mutator in [49, Theorem 1]. In 1951, Shoda proved that if F is an infinite field,
then there exists an upper bound of ℓC(SLn(F )) (see [50]). Then, Thomp-
son [62] showed remarkable results on the commutator lengths of SLn(F ) and
PSLn(F ) in 1960.

Theorem 36 ([62]). Let F be a field containing at least four elements and
n ≥ 2 be an integer. Then, ℓC(SLn(F )) = 1 and ℓC(PSLn(F )) = 1.

4.2. Commutator lengths of linear groups over rings and infinite
fields

In 1986, Djoković proved that ℓC(SLn(H)) = 1 with the real quaternion
division ring H (see [17, Theorem 3]). In 1987, Newman [45] showed that over a
principal ideal ring R if there exists a positive integer k such that ℓC(SL3(R)) ≤
3, then ℓC(SLn(R)) ≤ c log n+k−3 for n ≥ 3, c = 2 log 3

2 and log is the symbol
of logarithms to the base 10. Moreover, Newman posted a question that if the
group SLn(R) is perfect; that means this group is equal to its own commutator
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subgroup; whether there exists an absolute constant k such that every element
of SLn(R) is a product of at most k commutators. Not long after that, Dennis
and Vaserstein ([12]) showed this question is not true in 1988. Namely, the
authors showed ℓC(SLn(C)) = ∞ for n ≥ 2. Furthermore, they also showed
ℓC(SLn(Z)) ≤ 6 with n large enough and evaluated the commutator lengths of
UTn(R) and LTn(R) for n ≥ 3.

Theorem 37 ([12, Lemma 13]). Let R be a ring and n ≥ 3. Then, every matrix
in UTn(R) (resp., LTn(R)) can be expressed as a product of two commutators
in SLn(R).

For the case n = 2, UT2(R) and LT2(R) are commutative groups, so their
commutator lengths is zero.

Moreover, Dennis and Vaserstein showed that if every matrix in GLn(R) is a
product of t triangular matrices, then it can be written as a product of 3+[t/2]
commutators with n ≥ 3 and t > 1 (see [12, Corollary 14]).

Later, the problem of classifying matrices in linear groups whose the com-
mutator lengths are bounded drew interested. We start with Vaserstein and
Wheland’s results [63] in 1990 for the case R is a commutative ring such that
sr(R) ≤ 1.

Theorem 38 ([63, Theorem 3]). Let R be a commutative ring such that sr(R) ≤
1. If either n ≥ 3 or n = 2 and 1 is the sum of two invertible elements, then
ℓC(SLn(R)) ≤ 2.

In 2012, S lowik [52] evaluated the commutator lengths of upper triangular
matrix groups.

Theorem 39 ([52, Lemma 3.2]). Suppose R is a commutative ring such that
sr(R) ≤ 1 and n ≥ 3. If R contains θ such that θ, (1 − θ) are invertible, then
UTn(R) = [Tn(R),Tn(R)] and ℓC(UTn(R)) ≤ 2.

Moreover, S lowik also estimated the commutator lengths of matrices in
Tn(F ) for the case F is an infinite field.

Theorem 40 ([52, Theorem 3.3]). Let F be an infinite field and n ≥ 1. If
A ∈ Tn(F ), then ℓC(A) = 1.

In [52] Bier and Holubowski evaluated the commutator lengths of matrices
UTn(R) for some rings in 2015.

Theorem 41 ([7, Theorem 1.5]). Let R be a ring such that the set of invertible
elements is commutative and 1 is the sum of two invertible elements. Then:

(a) UTn(R) = [Tn(R),Tn(R)] for all n ≥ 2.
(b) UTn(R) = [Tn(R),Tn(R)] and ℓC(UTn(R)) ≤ 2 for n ≥ 2.

Next, we consider the commutators lengths of infinite triangular matrices in
linear groups. In 2012, Gupta and Holubowski showed that if F is an infinite
field, then [T∞(F ),T∞(F )] = UT∞(F ) and ℓC(UT∞(F ) ≤ 2 (see [27, Theorem
1.2]). In 2015, Bier and Holubowski improved this result in [7].
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Theorem 42 ([7, Theorem 3.1]). Assume that F is an infinite field. Then,
ℓC(UT∞(F )) = 1. Moreover, if there exists an infinite diagonal matrix B whose
diagonal entries are distinct, then every matrix in UT∞(F ) can be written as
a commutator of B and a matrix in UT∞(F ).

Theorem 42 holds for some class of finite fields, which were showed by S lowik
[55] in 2013. In particular, if F is a field containing at least three elements,
then [T∞(F ),T∞(F )] = [UT∞(F ),T∞(F )] = UT∞(F ) and every matrix in
UT∞(F ) can be written as [A,B] in which A ∈ UT∞(F ) and B ∈ T∞(F ) (see
[55, Lemma 3.1]). To sum up, we present the following result.

Theorem 43. Let F be a finite field containing at least three elements or an
infinite field. Assume that A ∈ UT∞(F ). Then, there exist a matrix B ∈
UT∞(F ) and a matrix C ∈ T∞(F ) such that A = [B,C].

Bier and Holubowski extended Theorem 43 in [7] for some class of rings.

Theorem 44 ([7, Theorem 1.3]). Assume that R is a ring such that the set
of invertible elements is commutative and 1 is the sum of two invertible ele-
ments. Then, [T∞(R),T∞(R)] = UT∞(R) and every matrix in UT∞(R) can
be written as a product of at most two commutators.

Next, we explore the commutator lengths of linear groups over division rings.

4.3. Commutator lengths of linear groups over division rings

First, we present the commutator lengths of finite matrices in linear groups.
Starting in 2018, Egorchenkova et al. [19] evaluated the commutator lengths of
any noncentral matrices.

Theorem 45 ([19]). Let D be a noncommutative finite-dimensional division
ring and n ≥ 2. Assume that ℓC(D′) < ∞. Then:

(a) ℓC(A) ≤ ℓC(D′), where A is a noncentral matrix in SLn(D).
(b) ℓC(A) ≤ ℓC(D′), where A ∈ PSLn(D).

Significantly, in 2020 Gvozdevskii [30] showed that ℓC(SLn(D)) < ∞ if and
only if ℓC(D′) < ∞ provided that D is a finite-dimensional division ring.

Theorem 46 ([30, Corollaries 1 and 2]). Let D be a division ring and n ≥ 2 be
a positive integer. Assume that ℓC(D′) ≥ 2. Then, for every noncentral matrix
A in SLn(D), the following statements are true.

(a) ℓC(A) ≥ ℓC(D′)+2n2−3n+1
8n2−13n+8 .

(b) If ℓC(D′) ≤ 6n2 − 10n + 7, then A is a commutator in GLn(D).

Moreover, Gvozdevskii showed better results over a noncommutative finite-
dimensional division ring.

Theorem 47 ([30, Theorem 2]). Let D be a noncommutative finite-dimensional
division ring and n > 2 be a positive integer. Then,
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(a) Every noncentral matrix in SLn(D) can be written as a products of at

most ⌈ ℓC(D′)
n ⌉ commutators in GLn(D).

(b) Every noncentral matrix in SLn(D) can be written as a products of at

most ⌈ ℓC(D′)
n−2 ⌉ commutators in SLn(D).

Where ⌈x ⌉ denotes the ceiling function of x.

In addition, Gvozdevskii also estimated the commutator length of every
noncentral matrix in SLn(D) for the case when ℓC(D′) ≤ n.

Theorem 48 ([30, Corollaries 3 and 4]). Let D be a noncommutative finite-
dimensional division ring. Then:

(a) Every noncentral matrix A in SLn(D) is a commutator in GLn(D) if
n ≥ 2 and ℓC(D′) ≤ n.

(b) Every noncentral matrix A in SLn(D) is a commutator in SLn(D) if
n ≥ 3 and ℓC(D′) ≤ n− 2.

Note that the above results evaluated the commutator lengths of noncentral
matrices in SLn(D). Moreover, Gvozdevskii also showed that every central
matrix in SLn(D) can be written as a product of a commutator and a noncentral
matrix in SLn(D). Therefore, we can evaluate the commutator lengths of all
matrices in SLn(D).

Next, we present the commutator lengths of infinite matrices in linear groups.
In 2022, M. H. Bien et al. [4] estimated the commutator lengths of matrices in
UT∞(D) over finite-dimensional division rings.

Theorem 49 ([4, Theorem 1.1]). Let D be a finite-dimensional division ring
and B be an infinite diagonal matrix with pairwise nonconjugate diagonal en-
tries, then every matrix in UT∞(D) can be written as a commutators of B and
a matrix in UT∞(D).

Now, we shall continue with the commutator lengths of matrices in
SLV K,∞(F ). In 2012, Gupta and Holubowski showed that if F is an infi-
nite field, then ℓC(SLV K,∞(F )) ≤ 3 (see [27, Theorem 1.1]). Then, this result
is extended by reducing ℓC(SLV K,∞(F )) ≤ 2 for the case when F is a field
containing at least four elements (see [7, Theorem 1.4]). In this line, Bien et
al. [4, Theorem 1.4] showed that ℓC(SLV K,∞(D)) = 1, where D is an infinite
commutative division ring or D is a quaternion division ring. Therefore, based
on these papers we present the following theorem.

Theorem 50. Let D be a division ring. Then,

[GLV K,∞(D),GLV K,∞(D)] = SLV K,∞(D).

Moreover,

(a) ℓC(SLV K,∞(D)) = 1 if D is an infinite field or a quaternion division
ring.

(b) ℓC(SLV K,∞(D)) ≤ 2 if D is a field containing at least four elements.
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Let R be an arbitrary ring. We consider the subgroup SL∞(R) of the stable
general linear group GL∞(R), generated by elementary transvections. In 1989,
Dennis and Vaserstein [13, Corollary 4] proved that every matrix in SL∞(R) can
be written as a product of two commutators in SL∞(R). In 2022, Gvozdevskii
evaluated the commutator length of matrices in SL∞(R) for the case R is a
noncommutative finite-dimensional division ring.

Theorem 51. If D is a finite-dimensional division ring, then every matrix in
SL∞(D) is a commutator in SL∞(D).

Recently Bien et al. [5] answered the problem which Draxl asked in [18,
Problem 1, p. 102]. In particular, if D is a finite-dimensional division ring
which is tame and its center is Heselian, then ℓC(D′) is bounded from above
by a positive integer depending on dimFD.

Finally, we present results showing the correlation of commutator lengths of
SLn(D), commutator of involutions lengths of SLn(D) and commutator lengths
of D.

Theorem 52 ([5, Corollary]). Let D be a finite-dimensional division ring and
n ≥ 2. Then, the followings are equivalent.

(a) ℓC(SLn(D)) < ∞.
(b) ℓCI(SLn(D)) < ∞.
(c) ℓC(D′) < ∞.

5. Open problems

In this section, we propose some open problems that have been collected
from some references and motivated by results in previous sections.

According to [19], Egorchenkova and Gordeev showed that every noncentral
matrix in SLn(D) can be seen as a commutator of matrices in SLn(D) provided
that D is a noncommutative finite-dimensional division ring and ℓC(D′) = 1.
Moreover, the authors also proposed a question about the commutator lengths
of matrices in PSLn(D) (see [19, p. 563]).

Problem 1. Let D be a noncommutative finite-dimensional division ring and
n ≥ 2. For a noncentral matrix A ∈ PSLn(D), whether there exists matrices
P and Q in PSLn(D) such that A = [P,Q]?

Note that M. H. Bien et al. gave an example about an infinite division D
for which there does not exist a positive integer d such that every matrix in
PSLn(D) can be written as d commutators of involutions (see [6, Proposition
3.5]).

The following problem is posted by Draxl in 1980 (see [18, Problem 1,
p. 102]).

Problem 2. Let D be a finite-dimensional division ring with center F such
that dimFD = m2. Does there exist an positive integer d depending on m such
that ℓC(D′) ≤ d?
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In [30, Theorems 1 and 4], we see that ℓC(SLn(D)) < ∞ if and only if
ℓC(D′) < ∞ for every finite-dimensional division ring D. From this, the fol-
lowing problem is similar to Problem 2.

Problem 3. Let D be a finite-dimensional division ring with center F such
that dimFD = m2 and n ≥ 1. Does there exist an integer d depending on m
such that ℓC(GLn(D)) ≤ d?

Note that Problem 2 and Problem 3 are solved if the finite-dimensional
division ring D satisfies one of the following conditions.

(a) D is a quaternion division ring (see [4, Lemma 2.5]).
(b) The center of D is a p-adic number field ([44]).
(c) D is a tame or totally ramifield finite-dimensional division ring with

Henselian center (see [5, Section 2]).

When we wrote this paper, we realized that the commutator lengths of linear
groups equaling 1 is a problem of interest.

Problem 4. Classify rings which satisfy the property that the commutator
lengths of its multiplicative subgroup equals 1.

Problem 4 is inspired by [12]. Note that this problem is solved for the case
when R is a quaternion division ring (see [4, Lemma 2.5]).

Let R be a ring and n ≥ 3. Assume that the group SLn(R) is perfect; that
means this group equals its own commutator subgroup.

Problem 5. Classify rings R in which SLn(R) are perfect and its commutator
lengths are bounded.

Note that Problem 5 is solved for rings satisfying the first Bass stable range
condition and still remains open in case when R is a division ring.

The following is a question of Grunenfelder et al. in [26, Question 4.3].

Problem 6 ([26, Question 4.3]). Let p be a prime number and F be a field
containing a primitive pth root of 1. Does there exist an positive integer k less

than four such that every matrix in T
(p)
n can be written as a product of at most

k matrices of order p in T
(p)
n ?

According to Theorem 18, every matrix in ±SLV K,∞(F ) can be written as
a product of at most five involutions. May this number be smaller?

Problem 7. Classify fields F such that every matrix in ±SLV K,∞(F ) is a
product of at most four involutions in ±SLV K,∞(F ).

Does Theorem 29 hold for the case when the characteristic of the field F is
equal 2?

Problem 8. Let F be a field of characteristic 2. Can every matrix in
SLV K,∞(F ) be written as a product of at most four involutions?



298 N. T. T. HA

It is shown that if an arbitrary matrix is a product of two involutions, then
it is similar to its inverse. However, the converse is not true, particularly for
matrices over non-commutative rings.

Problem 9. Classify rings R which satisfy the property that if every matrix
in GLn(R) is similar to its inverse, then it is a product of two involutions.

Note that Problem 9 was solved for the case when R is a field (see Theorem
9).

Next, let G be a group, we call an element A is reversible if there exists
B ∈ G such that B−1AB = A−1. Let F be a field, it is known that every
matrix in GLn(F ) is reversible if and only if it is a product of two involutions
(see Theorem 9). Does this hold for the reversible elements in the special linear
group SLn(F )?

Problem 10. Classify fields F which satisfy the property that every reversible
matrix in SLn(F ) is a product of two involutions.

This problem was solved for SLn(C) with n ̸= 2 (mod 4) (see [46, p. 3]).
Inspired by the article [27], we consider the group GLc(∞, D) to be the

group of all infinite dimensional column-finite invertible matrices over division
rings D. It is known that GLc(∞, D) is its commutator subgroup, this means
GLc(∞, D) = [GLc(∞, D),GLc(∞, D)]. However, the commutator lengths of
GLc(∞, D) are still open.

Problem 11. Let D be a division ring. There exists a number k such that the
commutator length of GLc(∞, D) is bounded by k.

Also, the following problem is Bogopolskii’s conjecture mentioned in [27,
p. 1].

Problem 12. The commutator subgroup [GLc(∞,Z),GLc(∞,Z)] has uncount-
able index in GLc(∞,Z).

Conclusion and acknowledgments

There are some interesting results that the author does not have a clear
source to cite, so they are not mentioned in the survey. Specifically, in the
case of matrices of order two in Z. In [36] it is mentioned that every natural
number m, every matrix in GL2(Z) and SL2(Z) cannot be represented less than
m involutions in GL2(Z) and SL2(Z). However, the author could not find the
original document of this result even though it is classical. Historically, this
survey reminds of results for the involution lengths and the commutator lengths
of matrices in linear groups. One original intention was to better understand
the lengths of matrices with respect to a set of involutions and a set of com-
mutators. In doing so, the author discovered interesting problems that are the
stated open problems. The author would be grateful if readers could provide
more information related to this topic, as well as participate in pursuing open
problems.
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[17] D. Ž. Djoković, On commutators in real semisimple Lie groups, Osaka J. Math. 23
(1986), 223–238.

[18] P. Draxl and M. Kneser, SK1 Schiefkorpern, Lecture Notes in Math. Vol 778, Springer,

Berlin, 1980.
[19] E. A. Egorchenkova and N. L. Gordeev, Products of commutators on a general linear

group over a division algebra, J. Math. Sci. (N.Y.) 243 (2019), no. 4, 561–572.
[20] E. W. Ellers, Products of two involutory matrices over skewfields, Linear Algebra Appl.

26 (1979), 59–63. https://doi.org/10.1016/0024-3795(79)90172-1

https://doi.org/10.1016/0024-3795(93)00346-2
https://doi.org/10.1016/0024-3795(93)00346-2
https://doi.org/10.1080/03081087708817174
https://doi.org/10.1080/03081087.2022.2091508
https://doi.org/10.1016/j.laa.2022.03.025
https://doi.org/10.1016/j.laa.2023.09.019
https://doi.org/10.1016/j.laa.2023.09.019
https://doi.org/10.1080/03081087.2014.1003529
https://doi.org/10.1080/03081087.2014.1003529
https://doi.org/10.1016/j.laa.2009.06.006
https://doi.org/10.1080/00927878408823008
https://doi.org/10.1016/j.jalgebra.2019.04.009
https://doi.org/10.1016/0021-8693(88)90055-5
https://doi.org/10.1016/0021-8693(88)90055-5
https://doi.org/10.1007/BF00538432
https://doi.org/10.1007/BF01898863
https://doi.org/10.1512/iumj.1977.26.26040
https://doi.org/10.1016/0024-3795(79)90172-1


300 N. T. T. HA

[21] E. W. Ellers and J. G. Malzan, Products of reflections in GL(n,H), Linear and Multilin-

ear Algebra 20 (1987), no. 4, 281–324. https://doi.org/10.1080/03081088708817763

[22] W. B. Fite, On metabelian groups, Trans. Amer. Math. Soc. 3 (1902), no. 3, 331–353.
https://doi.org/10.2307/1986383

[23] I. Gargate and M. Gargate, Expressing matrices into products of commutators of invo-
lutions, skew-involutions, finite order and skew finite order matrices, https://arxiv.org/

abs/2007.12305.

[24] I. Gargate and M. Gargate, Expressing upper triangular matrices as products of commu-
tators of finite order elements, Linear Multilinear Algebra 70 (2022), no. 20, 5571–5579.

https://doi.org/10.1080/03081087.2021.1920875

[25] K. R. Goodearl and P. Menal, Stable range one for rings with many units, J. Pure Appl.
Algebra 54 (1988), no. 2-3, 261–287. https://doi.org/10.1016/0022-4049(88)90034-5
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