DOI QR코드

DOI QR Code

Seismic Facies Classification of Igneous Bodies in the Gunsan Basin, Yellow Sea, Korea

탄성파 반사상에 따른 서해 군산분지 화성암 분류

  • Yun-Hui Je (Division of Earth Environmental System, Pusan National University) ;
  • Ha-Young Sim (Division of Earth Environmental System, Pusan National University) ;
  • Hoon-Young Song (West & South Sea Exploration Team, Domestic Business Development Department, Korea National Oil Corporation) ;
  • Sung-Ho Choi (West & South Sea Exploration Team, Domestic Business Development Department, Korea National Oil Corporation) ;
  • Gi-Bom Kim (Department of Geological Sciences, Pusan National University)
  • 제윤희 (부산대학교 지구환경시스템학부) ;
  • 심하영 (부산대학교 지구환경시스템학부) ;
  • 송훈영 (한국석유공사 국내사업개발처 서남해탐사팀) ;
  • 최성호 (한국석유공사 국내사업개발처 서남해탐사팀) ;
  • 김기범 (부산대학교 지질환경과학과)
  • Received : 2024.04.08
  • Accepted : 2024.04.19
  • Published : 2024.04.30

Abstract

This paper introduces the seismic facies classification and mapping of igneous bodies found in the sedimentary sequences of the Yellow Sea shelf area of Korea. In the research area, six extrusive and three intrusive types of igneous bodies were found in the Late Cretaceous, Eocene, Early Miocene, and Quaternary sedimentary sequences of the northeastern, southwestern and southeastern sags of the Gunsan Basin. Extrusive igneous bodies include the following six facies: (1) monogenetic volcano (E.mono) showing cone-shape external geometry with height less than 200 m, which may have originated from a single monogenetic eruption; (2) complex volcano (E.comp) marked by clustered monogenetic cones with height less than 500 m; (3) stratovolcano (E.strato) referring to internally stratified lofty volcanic edifices with height greater than 1 km and diameter more than 15 km; (4) fissure volcanics (E.fissure) marked by high-amplitude and discontinuous reflectors in association with normal faults that cut the acoustic basement; (5) maar-diatreme (E.maar) referring to gentle-sloped low-profile volcanic edifices with less than 2 km-wide vent-shape zones inside; and (6) hydrothermal vents (E.vent) marked by upright pipe-shape or funnel-shape structures disturbing sedimentary sequence with diameter less than 2 km. Intrusive igneous bodies include the following three facies: (1) dike and sill (I.dike/sill) showing variable horizontal, step-wise, or saucer-shaped intrusive geometries; (2) stock (I.stock) marked by pillar- or horn-shaped bodies with a kilometer-wide intrusion diameter; and (3) batholith and laccoliths (I.batho/lac) which refer to gigantic intrusive bodies that broadly deformed the overlying sedimentary sequence.

본 논문은 서해 군산분지 퇴적층 내에서 발견되는 다양한 화성암들을 탄성파 반사상에 따라 분류하고 그 공간적 분포 양상을 도시하는 과정에 대해 상술한다. 연구지역인 서해 대륙붕 군산분지의 북동소분지, 남서소분지, 남동소분지 내에서 총 6종류의 분출 화성암 반사상과 3종류의 관입 화성암 반사상이 중생대 후기 백악기, 신생대 에오세 및 전기 마이오세, 신생대 제4기 층에서 발견되었다. 분출 화성암은 그 크기, 외형, 내부 층리구조에 따라 (1) 높이 200 m 이하의 고깔형 화산체들로 1회성 단성화산 분화를 통해 형성된 것으로 추정되는 단성화산체(E.mono), (2) 단성화산체들이 모여 높이 500 m 이내의 하나의 화산체를 형성하는 단성화산복합체(E.comp), (3) 높이 1 km 이상 직경 15 km 이상으로 내부에 복수의 층이 인지되는 성층화산체(E.strato), (4) 기반암 저지대의 정단층 주변에서 고반사 특성을 보이는 열극 분출암(E.fissure), (5) 저각 사면부와 내부에 직경 약 2 km 화도 구조를 보여주는 마르-다이아트림(E.maar), (6) 퇴적층을 교란하는 직경 1 km 이내 파이프형 구조를 갖는 열수분출공(E.vent)으로 구성된다. 관입 화성암은 상부 퇴적층의 변형구조를 통해 인지되며, (1) 수평형, 계단형, 종지형 등 다양한 수직/수평 관입 기하를 나타내는 암맥 및 암상(I.dike/sill), (2) 직경 1-3 km의 뿔 또는 기둥 모양 관입암체인 화성암주(I.stock), (3) 상부 퇴적층을 광범위하게 변형시키는 폭 10 km 이상의 관입암체인 저반/병반(I.batho/lac)으로 구성된다. 분출 화성암은 주로 군산분지 남서소분지 내 백악기 및 신생대 고제3기 에오세 층 내에서 인지되며, 관입암체는 주로 남동 및 남서 소분지 내에서 발견된다. 열수분출공은 군산분지 전역에서 발견되며 활동시기는 전반적으로 중기 마이오세 이후로 일부는 현재까지 활동중인 것으로 보인다.

Keywords

Acknowledgement

이 연구는 한국석유공사의 "서해 대륙붕 군산분지 내 화성암 분포 해석 용역"을 통해 수행되었습니다.

References

  1. Atia, M.H., Ahmed, A.M., and Korrat, I., 2015, Thermal maturation simulation and hydrocarbon generation of the turonian wata formation in ras budran oil field, Gulf of Suez, Egypt. Journal of Environmental Sciences, 44(1), 57-92.
  2. Cas, R. and Wright, J., 2012, Volcanic successions modern and ancient: A geological approach to processes, products and successions. Springer Science & Business Media. 528 p.
  3. Didyk, B.M. and Simoneit, B.R., 1989, Hydrothermal oil of Guaymas Basin and implications for petroleum formation mechanisms. Nature, 342(6245), 65-69. https://doi.org/10.1038/342065a0
  4. Galland, O., Planke, S., Neumann, E.R. and MaltheSorenssen, A., 2009, Experimental modelling of shallow magma emplacement: Application to saucer-shaped intrusions. Earth and Planetary Science Letters, 277(3-4), 373-383. https://doi.org/10.1016/j.epsl.2008.11.003
  5. Gilder, S. and Courtillot, V., 1997, Timing of the North-South China collision from new middle to late Mesozoic paleomagmatic data from the North China Block. Journal of Geophysical Research: Solid Earth, 102(B8), 17713-17727. https://doi.org/10.1029/97JB01201
  6. Hansen, D.M. and Cartwright, J., 2006, The three-dimensional geometry and growth of forced folds above saucer-shaped igneous sills. Journal of Structural Geology, 28(8), 1520-1535. https://doi.org/10.1016/j.jsg.2006.04.004
  7. Hsu, K.J., Shu, S., and Jiliang, L., 1989, Mesozoic suturing in the Huanan Alps and the tectonic assembly of South China. Tectonic evolution of the Tethyan region, 551-565.
  8. Je, Y.H. and Kim, G.B., 2021, Seismic stratigraphy and reflection configurations of the Quarternary Ulleungdo-Dokdo volcanic group, the East Sea. 2021 Joint Fall Meeting of Korean Geological Societies, Jeju, October 26-28.
  9. Lee, G.H., Kwon, Y.I., Yoon, C.S., Kim, H.J., and Yoo H.S., 2006, Igneous complexes in the eastern Northern South Yellow Sea Basin and their implications for hydrocarbon systems. Marine and Petroleum Geology, 23, 631-645. https://doi.org/10.1016/j.marpetgeo.2006.06.001
  10. Lee, C., Shinn, Y.J., and Ryu, I.C., 2016, Development of regional uplift and uplift-related strata in Gunsan Basin, Yellow Sea: implications for Cenozoic crustal extension. International Geology Review, 58(16), 2029-2045. https://doi.org/10.1080/00206814.2016.1202151
  11. Miranda, F.S., Vettorazzi, A.L., Cunha, P.R.D.C., Aragao, F.B., Michelon, D., Caldeira, J.L., Porsche, E., Martins, C., Ribeiro, R.B., Vilela, A.F., Correa, J.R., Silveira, L.S., and Andreola, K., 2018, Atypical igneous-sedimentary petroleum systems of the Parnaiba Basin, Brazil: seismic, well logs and cores. Geological Society, London, Special Publications, 472(1), 341-360. https://doi.org/10.1144/SP472.15
  12. Pang, Y., Zhang, X., Xiao, G., Guo, X., Wen, Z., Wu, Z., and Zhu, X., 2017, Characteristics of Meso-Cenozoic Igneous Complexes in the South Yellow Sea Basin, Lower Yangtze Craton of Eastern China and the Tectoning Setting. Acta Geologica Sinica, 91(3), 971-987. https://doi.org/10.1111/1755-6724.13319
  13. Park, K.S., Park, K.P., Sunwoo, D., Kwon, Y.I., Yoo, D.G., Cheong, T.J., Oh, J.H., Bong, P.Y., Son, J.D., Lee, H.Y., Ryu, B.J., Son, B. K., Hwang, I.G., Lee, Y.J., and Kim, H.J., 1997, Petroleum resources assessment on the western part of the Kunsan Basin. KIGAM Research Report, KR-97(C)-17, 190 p. (in Korean with English abstract)
  14. Rabbel, O., Palma, O., Mair, K., Galland, O., Spacapan, J.B., and Senger, K., 2021, Fracture networks in shale-hosted igneous intrusions: Processes, distribution and implications for igneous petroleum systems. Journal of Structural Geology, 150, 104403.
  15. Ren, J., Tamaki, K., Li, S., and Junxia, Z., 2002, Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 344, 175-205. https://doi.org/10.1016/S0040-1951(01)00271-2
  16. Ryu, I.C., Kim, B.Y., Kwak, W.J., Kim, G.H., and Park, S.J., 2000, Stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas. Korean Journal of Petroleum Geology, 8(1_2). 1-43. (in Korean with English abstract)
  17. Ryu, I.C., Yoon, S.H., Kwon, S., Kwon, I.K., Oh, C.W., Lee, E.H., Cheong, D.K., Son, B.K., and Sunwoo, D., 2013, Technical evaluation of hydrocarbon resource potential in the Gunsan and Jeju basins, offshore western and southern Korea. Geological Society of Korea Report for Korea National Oil Corporation, 1, 151 p. (in Korean)
  18. Schmiedel, T., Kjoberg, S., Planke, S., Magee, C., Galland, O., Schofield, N., Jackson, C.A.-L., and Jerram, D.A., 2017, Mechanisms of overburden deformation associated with the emplacement of the Tulipan sill, mid-Norwegian margin. Interpretation, 5(3), SK23-SK38. https://doi.org/10.1190/INT-2016-0155.1
  19. Shinn, Y.J., Chough, S.K., and Hwang, I.G., 2010, Structural development and tectonic evolution of Gunsan Basin (Cretaceous-Tertiary) in the central Yellow Sea. Marine and Petroleum Geology, 27, 500-514. https://doi.org/10.1016/j.marpetgeo.2009.11.001
  20. Shinn, Y.J., 2015, Geological structures and controls on half-graben inversion in the western Gunsan Basin, Yellow Sea. Marine and Petroleum Geology, 68, 480-491. https://doi.org/10.1016/j.marpetgeo.2015.09.013
  21. Spacapan, J.B., Palma, J.O., Galland, O., Manceda, R., Rocha, E., D'odorico, A., and Leanza, H.A., 2018, Thermal impact of igneous sill-complexes on organic-rich formations and implications for petroleum systems: A case study in the northern Neuquen Basin, Argentina. Marine and Petroleum Geology, 91, 519-531. https://doi.org/10.1016/j.marpetgeo.2018.01.018
  22. Valle, P.F. and Simoneit, B.R., 2005, Hydrothermal bitumen generated from sedimentary organic matter of rift lakes-Lake Chapala, Citala Rift, western Mexico. Applied geochemistry, 20(12), 2343-2350. https://doi.org/10.1016/j.apgeochem.2005.09.001
  23. Watson, M.P., Hayward, A.B., Parkinson, D.N., and Zhang, Z.M., 1987, Plate tectonic history, basin development and petroleum source rock deposition onshore China. Marine and Petroleum Geology, 4(3), 205-225. https://doi.org/10.1016/0264-8172(87)90045-6
  24. Yamanaka, T., Ishibashi, J., and Hashimoto, J., 2000, Organic geochemistry of hydrothermal petroleum generated in the submarine Wakamiko caldera, southern Kyushu, Japan. Organic Geochemistry, 31(11), 1117-1132. https://doi.org/10.1016/S0146-6380(00)00119-4
  25. Yi, S.H., Yi, S.S., Batten, D.J., Yun, H.S., and Park, S.J., 2003, Cretaceous and Cenozoic non-marine deposits of the Northern South Yellow Sea Basin, offshore western Korea: palynostratigraphy and paleoenvironments. Palaeogeography, Palaeoclimatology, Palaeoecology, 191, 15-44. https://doi.org/10.1016/S0031-0182(02)00637-5