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CONTINUITY OF THE MAXIMAL COMMUTATORS

IN SOBOLEV SPACES

Xixi Jiang and Feng Liu

Abstract. We prove the Sobolev continuity of maximal commutator and

its fractional variant with Lipschitz symbols, both in the global and local
cases. The main result in global case answers a question originally posed

by Liu and Wang in [29].

1. Introduction

1.1. Background

The regularity theory of maximal operators has been an active topic of
current research. The first work was due to Kinnunen [25] who showed that
the Hardy–Littlewood maximal operator

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy

is bounded on the first order Sobolev space W 1,p(Rn) for 1 < p ≤ ∞, where
B(x, r) is the open ball in Rn centered at x with radius r and |B(x, r)| denotes
its volume. Here

W 1,p(Rn) := {f : Rn → R | ∥f∥W 1,p(Rn) := ∥f∥Lp(Rn) + ∥∇f∥Lp(Rn) < ∞},
where ∇f = (D1f, . . . ,Dnf) is the weak gradient of f . Since then, more and
more scholars were devoted to extending Kinnunen’s result to various cases. For
examples, see [22,26] for the local case, [27] for the fractional case, [10,30] for the
multisublinear case. It is worth pointing out that the Lp(Rn) boundedness of
M plays a key role in deducing the boundedness of M : W 1,p(Rn) → W 1,p(Rn)
when 1 < p < ∞. The endpoint Sobolev regularity of the Hardy–Littlewood
maximal operators has been recently studied by many authors, see [2, 28, 42]
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for the case n = 1 and [21, 36] for the case n ≥ 2. Other interesting works
related to this topic can be found in [5, 37], among others.

In light of the W 1,p(Rn) boundedness of M for 1 < p < ∞, it is natural
and interesting to ask whether the map M : W 1,p(Rn) → W 1,p(Rn) is con-
tinuous where 1 < p < ∞. This question is attributed to T. Iwaniec and
was firstly posed by Haj lasz and Onninen in [22]. It is well known that M
is continuous on Lp(Rn) for all 1 < p ≤ ∞, which follows directly from the
well-known Lp bounds and the sublinearity. However, since the maximal op-
erator is not necessarily sublinear at the derivative level, the continuity of
M : W 1,p(Rn) → W 1,p(Rn) for 1 < p < ∞ is certainly a nontrivial issue.
This question was first studied by Luiro [34] who established the continuity
of M : W 1,p(Rn) → W 1,p(Rn) for 1 < p < ∞ by establishing some explicit
formulas for the derivatives of the maximal function. Later on, Luiro’s result
was extended to the local case in [35], to the bilinear case in [10]. The endpoint
Sobolev continuity was first studied by Carneiro, Madrid and Pierce [9]. More
interesting works may be found in [4–8,18,19,38].

1.2. Maximal commutators

In this paper we are concerned with the continuity of maximal commutator
and its fractional variant with Lipschitz symbols in Sobolev spaces. Let 0 ≤
α < n and b be a locally integral function defined on Rn. The fractional
maximal commutator with b is defined by

Mb,αf(x) = sup
r>0

1

|B(x, r)|1−α/n

∫
B(x,r)

|b(x) − b(y)||f(y)|dy, x ∈ Rn.

Particularly, when α = 0, Mb,α is the centered maximal commutator Mb.
We point out the following facts, which are useful in our proof of main result.

Remark 1.1. The operator Mb,α is positive and sublinear. Let b ∈ L∞(Rn),
1 < p < ∞, 1/q = 1/p−α/n and 0 ≤ α < n/p. Then the map Mb,α : Lp(Rn) →
Lq(Rn) is bounded and continuous. To see this, observe that

Mb,αf(x) ≤ (|b(x)| + ∥b∥L∞(Rn))Mαf(x),

where Mα is the usual fractional maximal operator, i.e.,

Mαf(x) = sup
r>0

1

|B(x, r)|1−α/n

∫
B(x,r)

|f(y)|dy, x ∈ Rn.

It is well known that Mα : Lp(Rn) → Lq(Rn) is bounded and continuous.
Applying the above observation and the bounds of Mα, we have

(1.1) ∥Mb,αf∥Lq(Rn) ≤ Cα,n,p∥b∥L∞(Rn)∥f∥Lp(Rn).

Combining (1.1) and the sublinearity of Mb,α implies the continuity of Mb,α :
Lp(Rn) → Lq(Rn).
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The maximal commutator and its fractional variant has been the subject of
many recent articles in harmonic analysis. The maximal commutator was first
introduced by Garcia-Cuerva et al. [16] who used its Lp bounds to characterize
BMO(Rn) function. In fact, the maximal commutator plays an important
role in the study of commutators of singular integral operators with BMO
symbols (see, for instance [39,40]). Recently, Zhang [46,47] used the bounds of
maximal commutators on the Lebesgue spaces and variable exponent Lebesgue
spaces to characterize the Lipschitz space. The endpoint estimate of maximal
commutator can be found in [1,3]. Recently, the investigation on the fractional
maximal commutators has attracted the attention of many authors (see [12,
13,20]). In fact, the investigation on various commutators has always been an
active topic in harmonic analysis and PDE (see [11,14,15,41,43–45] et al.).

Very recently, the regularity of maximal commutators has also attracted
a lot of attention. The first work was due to Liu, Xue and Zhang [33] who
proved that Mb is bounded on W 1,p1(Rn), where 1 < p1, p2, p < ∞, 1/p =
1/p1 + 1/p2 and b ∈ W 1,p2(Rn). Later on, Liu and Xi [31] extended the
above result to the fractional version and proved that Mb,α is bounded from
W 1,p1(Rn) to W 1,q(Rn) if 1 < p1, p2, p, p1p2/(p1 + p2) < ∞, 0 ≤ α < 1/p1,
1/q = 1/p1 + 1/p2 − α and b ∈ W 1,p2(Rn). Meanwhile, the second author and
Wang [29] studied the Sobolev boundedness of Mb,α with b belonging to the
inhomogeneous Lipschitz space Lip(Rn). Here

Lip(Rn) := {f : Rn → C continuous : ∥f∥Lip(Rn) < ∞},
where

∥f∥Lip(Rn) := ∥f∥L∞(Rn) + ∥f∥Lip(Rn)

and

∥f∥Lip(Rn) := sup
x∈Rn

sup
h∈Rn\{0}

|f(x + h) − f(x)|
|h|

.

The following presents the differentiable properties of the Lipschitz function.

Remark 1.2. Let b ∈ Lip(Rn). It was pointed out in [29] that the weak partial
derivatives Dib, i = 1, . . . , n, exist almost everywhere. Moreover, we have

that Dib(x) = limh→0
b(x+hei)−b(x)

h and |Dib(x)| ≤ ∥b∥Lip(Rn) for almost every
x ∈ Rn. Here el = (0, . . . , 0, i, 0, . . . , 0) is the canonical i-th base vector in Rn

for i = 1, . . . , n.

We now list the main result of [29] as follows.

Theorem A ([29]). Let 1 < p < ∞, 0 ≤ α < n/p and 1/q = 1/p − α/n. If
b ∈ Lip(Rn), then the map Mb,α : W 1,p(Rn) → W 1,q(Rn) is bounded.

Based on Theorem A, a natural question was posed by Liu and Wang (see
Remark 1.9 in [29]).

Question 1.3. Let 1 < p < ∞, 0 ≤ α < n/p, 1/q = 1/p−α/n and b ∈ Lip(Rn).
Is the map Mb,α : W 1,p(Rn) → W 1,q(Rn) continuous?



464 X. JIANG AND F. LIU

This is one of main motivations of this work. We will give a positive answer
to Question 1.3.

Theorem 1.4. Let 1 < p < ∞, 0 ≤ α < n/p and 1/q = 1/p − α/n. Assume
b ∈ Lip(Rn). Then the map Mb,α : W 1,p(Rn) → W 1,q(Rn) is continuous.

1.3. The local case

The second one of main motivations is to establish the Sobolev continuity
of maximal commutator and its fractional variant with Lipschitz symbols in
the local setting. Let Ω be a subdomain in Rn and 0 ≤ α < n. For a lo-
cally integrable function b defined on Ω, we define the local fractional maximal
commutator by

Mb,α,Ωf(x) = sup
0<r<dist(x,Ωc)

1

|B(x, r)|1−α/n

∫
B(x,r)

|b(x)−b(y)||f(y)|dy, x ∈ Ω,

where Ωc = Rn \ Ω. When α = 0, Mb,α,Ω reduces to the local maximal com-
mutator Mb,Ω.

We point out the following facts, which follow from [29].

Remark 1.5. Let 1 < p < ∞, 0 ≤ α < n/p and 1/q = 1/p − α/n. Assume
b ∈ L∞(Ω). The following facts are valid:

(i) Let Mα,Ω be the local fractional maximal operator, i.e.,

Mα,Ωf(x) = sup
0<r<dist(x,Ωc)

1

|B(x, r)|1−α/n

∫
B(x,r)

|f(y)|dy, x ∈ Ω.

It is known that the map Mα,Ω : Lp(Ω) → Lq(Ω) is bounded and contin-
uous. Particularly, if f ∈ Lp(Ω), then

∥Mα,Ωf∥Lq(Ω) ≤ Cα,n,p∥f∥Lp(Ω).

(ii) The operator Mb,α,Ω is positive and sublinear. Moreover, the map Mb,α,Ω :
Lp(Ω) → Lq(Ω) is bounded and continuous. Particularly, if f ∈ Lp(Ω),
then

∥Mb,α,Ωf∥Lq(Ω) ≤ Cα,n,p∥b∥L∞(Ω)∥f∥Lp(Ω).

The Sobolev regularity for maximal operators in local setting was originally
studied by Kinnunen and Lindqvist [26] who established the boundedness of
the map MΩ : W 1,p(Ω) → W 1,p(Ω) for 1 < p ≤ ∞ (see also [22]). Here W 1,p(Ω)
is given by

W 1,p(Ω) := {f : Ω → R | ∥f∥W 1,p(Ω) := ∥f∥Lp(Ω) + ∥∇f∥Lp(Ω) < ∞},
where ∇f = (D1f, . . . ,Dnf) is the weak gradient of f . Kinnunen and
Lindqvist’s result was later extended to the fractional case in [24] and to the
multilinear case in [23]. Recently, the Sobolev regularity for maximal commu-
tators in local setting has also gotten a lot of attention. In 2021, Liu and Xi
[31] first studied the Sobolev boundedness of local maximal commutators in
the fractional setting. Very recently, Liu, Xue and Yabuta [32] established the
following result.
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Theorem B ([32]). Let 1 < p1, p2, p < ∞, 1/p = 1/p1 + 1/p2 and b ∈
W 1,p2(Ω). If |Ω| < ∞, then the map Mb,Ω : W 1,p1(Ω) → W 1,p(Ω) is bounded
and continuous.

In [29], Liu and Wang introduced the local Lipschitz space Lip(Ω) and estab-
lished the Sobolev boundedness of local maximal commutator and its fractional
variant with Lipschitz symbols. Recall that the inhomogeneous Lipschitz space
Lip(Ω) is given by

Lip(Ω) := {f : Ω → C continuous : ∥f∥Lip(Ω) < ∞},
where

∥f∥Lip(Ω) := ∥f∥L∞(Ω) + ∥f∥Lip(Ω)

and

∥f∥Lip(Ω) := sup
x, y∈Ω

|f(x) − f(y)|
|x− y|

.

Remark 1.6. It was pointed out in [29] that if b ∈ Lip(Ω), then the weak partial
derivatives Dib, i = 1, . . . , n, exist almost everywhere. Moreover, for almost

every x ∈ Ω we have that Dib(x) = lim
h→0

b(x+hei)−b(x)
h and |Dib(x)| ≤ ∥b∥Lip(Ω).

We now present partial results of [29] as follows.

Theorem C ([29]). Let b ∈ Lip(Ω).

(i) Let 1 < p < ∞. Then the map Mb,Ω : W 1,p(Ω) → W 1,p(Ω) is bounded.
(ii) Let p ∈ (1, n), α ∈ [1, n/p) and q = np/(n− (α− 1)p). Assume |Ω| < ∞.

Then the map Mb,α,Ω : W 1,p(Ω) → W 1,q(Ω) is bounded.

Based on Theorems B and C, it is natural and interesting to ask the follow-
ing.

Question 1.7. Let b ∈ Lip(Ω), 1 < p < ∞ and |Ω| < ∞. Is the map
Mb,Ω : W 1,p(Ω) → W 1,p(Ω) continuous? What about Mb,α,Ω?

The above question can be addressed by the following theorem.

Theorem 1.8. Let b ∈ Lip(Ω) and |Ω| < ∞.

(i) Let 1 < p < ∞. Then the map Mb,Ω : W 1,p(Ω) → W 1,p(Ω) is continuous.
(ii) Let p ∈ (1, n), α ∈ [1, n/p) and q = np/(n − (α − 1)p). Then the map

Mb,α,Ω : W 1,p(Ω) → W 1,q(Ω) is continuous.

The rest of this paper is organized as follows. Section 2 will be devoted
to presenting the proof of Theorem 1.4. The proof of Theorem 1.8 will be
given in Section 3. It should be pointed out that the main ideas employed
in the proofs of Theorems 1.4 and 1.8 are motivated by [29, 32, 34]. Due of
the presence of |b(x) − b(y)| in the integral average, the derivative formulas
of maximal commutators is more complex. In fact, we have to make use of
the global differentiable property of |b(x) − b(y)| when we consider the partial
derivatives of maximal commutators.
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Throughout this paper, the letter C will stand for positive constants not
necessarily the same one at each occurrence but is independent of the essential
variables. Especially, the letter Cα,β denote the positive constants that depend
on the parameters α, β. For a set A ⊂ Rn, we denote Ac = Rn \ A. For any
arbitrary functions F (x, y) defined on Rn × Rn, we set

∇xF = (D1,xF, . . . ,Dn,xF ), ∇yF = (D1,yF, . . . ,Dn,yF ),

were Di,xF (resp., Di,yF ) is the i-th weak parital derivative of F in x (resp.,
y). Throughout this paper, let b be a local integrable function, we denote
Fb(x, y) = |b(x) − b(y)|. For l ∈ {1, 2, . . . , n} and h ∈ R \ {0}, we set

(Fx,b)
l
h(y)=

1

h
(Fb(x, y+hel)−Fb(x, y)), (Fy,b)

l
h(x)=

1

h
(Fb(x+hel, y)−Fb(x, y)).

2. Proof of Theorem 1.4

In this section we prove Theorem 1.4. The main ingredient of proving The-
orem 1.4 is the derivative formulas of maximal commutators (see Lemma 2.3).
Let us begin with some necessary notation and lemmas.

2.1. Preliminary notation and lemmas

Let b ∈ L∞(Rn) and f ∈ Lp(Rn) with 1 < p < ∞ and 0 ≤ α < n/p. For a
fixed point x ∈ Rn, we define the function Ab,α,x,f : [0,∞) → R by

Ab,α,x,f (r) =


0, if r = 0;

1

|B(x, r)|1−α/n

∫
B(x,r)

|b(x) − b(y)||f(y)|dy, if r ∈ (0,∞).

We define the set Rb,α,f (x) by

Rb,α,f (x) :=
{
r ≥ 0 : Mb,αf(x) = lim sup

rk→r
Ab,α,x,f (rk) for some rk > 0

}
.

It should be pointed out that the following facts are valid:
(i) Ab,α,x,f is continuous on (0,∞) for all x ∈ Rn and at r = 0 for almost

every x ∈ Rn;
(ii) limr→∞ Ab,α,x,f (r) = 0 since

Ab,α,x,f (r) ≤ (|b(x)| + ∥b∥L∞(Rn))∥f∥Lp(Rn)|B(x, r)|α/n−1/p, r > 0.

(iii) Rb,α,f (x) is nonempty and closed for all x ∈ Rn and

Mb,αf(x) = Ab,α,x,f (r) if 0 < r ∈ Rb,α,f (x), ∀x ∈ Rn,

Mb,αf(x) = Ab,α,x,f (0) for almost every x ∈ Rn such that 0 ∈ Rb,α,f (x).

Let u be a function defined on Rn. For all h ∈ R, |h| > 0, y ∈ Rn and
i = 1, 2, . . . , n, we define the functions ui

h and uh,i by setting

ui
h(x) =

u(x + hei) − u(x)

h
and uh,i(x) = u(x + hei).
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It is well known that uh,i → u in Lp(Rn) when h → 0, and if u ∈ W 1,p(Rn),
then ui

h → Diu in Lp(Rn) when h → 0 (see [17, Section 7.11]).
For R > 0, we denote by BR the ball of radius R centered at the origin. For

A ⊂ Rn and x ∈ Rn, we define

d(x,A) := inf
a∈A

|x− a| and A(λ) := {x ∈ Rn : d(x,A) ≤ λ} for λ ≥ 0.

We now prove the following lemma, which tells us how the sets Rb,α,f (x)
and Rb,α,g(x) are related to each other when ∥f − g∥Lp(Rn) is small.

Lemma 2.1. Let b ∈ L∞(Rn) and f ∈ Lp(Rn) with 1 < p < ∞ and 0 ≤ α <
n/p. Assume that fj → f in Lp(Rn) when j → ∞. Then for all R > 0 and
λ > 0, we have

(2.1) lim
j→∞

|{x ∈ B(0, R) : Rb,α,fj (x) ⊈ Rb,α,f (x)(λ)}| = 0.

Proof. We adopt the method of proving [34, Lemma 2.2] to prove this lemma.
Let λ > 0, R > 0 and ϵ ∈ (0, 1). Applying the argument similar to those
used to derive [34, Lemma 2.2], one can conclude that for any j ∈ Z, the set
{x ∈ Rn : Rb,α,fj (x) ⊈ Rb,α,f (x)(λ)} is measurable. Moreover, for almost every
x ∈ B(0, R), there exists γ(x) ∈ N \ {0} such that

Ab,α,x,f (r) < Mb,αf(x) − 1

γ(x)
, when d(r,Rb,α,f (x)) > λ.

So we can find γ = γ(R, λ, ϵ) ∈ N \ {0} and a measurable set E with |E| < ϵ
such that

(2.2)
B(0, R) ⊂ {x ∈ Rn : Ab,α,x,f (r) < Mb,αf(x) − γ−1

if d(r,Rb,α,f (x)) > λ} ∪ E.

Observe that

(2.3)

{x ∈ Rn : Ab,α,x,f (r) < Mb,αf(x) − γ−1 if d(r,Rb,α,f (x)) > λ}

⊂
3⋃

i=1

Bi,j ,

where

B1,j := {x ∈ Rn : |Mb,αfj(x) −Mb,αf(x)| ≥ (4γ)−1},
B2,j := {x ∈ Rn : |Ab,α,x,fj (r) −Ab,α,x,f (r)| ≥ (2γ)−1

for some r such that d(r,Rb,α,f (x)) > λ},
B3,j := {x ∈ Rn : Ab,α,x,fj (r) < Mb,αfj(x) − (4γ)−1 if d(r,Rb,α,f (x)) > λ}.

Since B3,j ⊂ {x ∈ Rn : Rb,α,fj (x) ⊂ Rb,α,f (x)(λ)}, then we get from (2.2) and
(2.3) that

(2.4) {x ∈ BR : Rb,α,fj (x) ⊈ Rb,α,f (x)(λ)} ⊂ B1,j ∪B2,j ∪ E.
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By our assumption, there exist N1 = N1(ϵ) ∈ N \ {0} and C > 0 such that
∥fj − f∥Lp(Rn) <

ϵ
γ for any j ≥ N1. By the sublinearity of Mb,α,

|Mb,αfj(x) −Mb,αf(x)| ≤ Mb,α(fj − f)(x).

We also note that

|Ab,α,x,fj (r) −Ab,α,x,f (r)| ≤ Mb,α(fj − f)(x).

The above facts together with Remark 1.1 imply that for any j ≥ N1,

|B1,j | + |B2,j | ≤ 2

∫
Rn

(4γMb,α(fj − f)(x))qdx ≤ C(γ∥fj − f∥Lp(Rn))
q ≤ Cϵq,

where 1/q = 1/p − α/n and C > 0 is independent of γ. In view of (2.4), we
have

|{x ∈ B(0, R) : Rb,α,fj (x) ⊈ Rb,α,f (x)(λ)}| ≤ Cϵ

for any j ≥ N1. This proves (2.1). □

Let A, B be two subsets of Rn. The Hausdorff distance of A and B is defined
by

π(A,B) := inf{δ > 0 : A ⊂ B(δ) and B ⊂ A(δ)}.
The following lemma tells us how close the sets Rb,α,f (x) and Rb,α,f (x+hel)

are when h is small enough. This plays a key role in establishing the derivative
formulas of maximal commutators.

Lemma 2.2. Let b ∈ Lip(Rn) and f ∈ Lp(Rn) with 1 < p < ∞ and 0 ≤ α <
n/p. Then for all R > 0, λ > 0 and l ∈ {1, 2, . . . , n}, we have

(2.5) lim
h→0

|{x ∈ B(0, R) : π(Rb,α,f (x),Rb,α,f (x + hel)) > λ}| = 0.

Proof. Let us fix l ∈ {1, 2, . . . , n}, λ > 0 and R > 0. For (2.5) it suffices to
show that

(2.6) lim
h→0

|{x ∈ B(0, R) : Rb,α,f (x + hel) ⊈ Rb,α,f (x)(λ)}| = 0

and

(2.7) lim
h→0

|{x ∈ B(0, R) : Rb,α,f (x) ⊈ Rb,α,f (x + hel)(λ)}| = 0.

We now prove (2.6). This is similar to the proof of Lemma 2.1, some mod-
ifications are made. By a change of variable, it is not difficult to see that
Rb,α,f (x + hel) = Rbh,l,α,fh,l

(x). Hence, for (2.6) it is enough to show that

(2.8) lim
h→0

|{x ∈ B(0, R) : Rbh,l,α,fh,l
(x) ⊈ Rb,α,f (x)(λ)}| = 0.

By the proof of Lemma 2.1, we know that the set {x ∈ Rn : Rbh,l,α,fh,l
(x) ⊈

Rb,α,f (x)(λ)} is measurable for any h ∈ R. Moreover, there exist γ = γ(R, λ, ϵ)
∈ N \ {0} and a measurable set E with |E| < ϵ such that

(2.9)
B(0, R)

⊂ {x ∈ Rn : Ab,α,x,f (r) < Mb,αf(x) − γ−1 if d(r,Rb,α,f (x)) > λ} ∪ E.
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Let h ∈ R. Observe that

(2.10)

{x ∈ Rn : Ab,α,x,f (r) < Mb,αf(x) − γ−1 if d(r,Rb,α,f (x)) > λ}

⊂
3⋃

i=1

Bi,h,

where

B1,h := {x ∈ Rn : |Mbh,l,αfh,l(x) −Mb,αf(x)| ≥ (4γ)−1},
B2,h := {x ∈ Rn : |Abh,l,α,x,fh,l

(r) −Ab,α,x,f (r)| ≥ (2γ)−1

for some r such that d(r,Rb,α,f (x)) > λ},
B3,h := {x ∈ Rn : Abh,l,α,x,fh,l

(r) < Mbh,l,αfh,l(x) − (4γ)−1

if d(r,Rb,α,f (x)) > λ}.

Note that B3,h ⊂ {x ∈ Rn : Rbh,l,α,fh,l
(x) ⊂ Rb,α,f (x)(λ)}. Thus, we get from

(2.9) and (2.10) that

(2.11) {x ∈ B(0, R) : Rbh,l,α,fh,l
(x) ⊈ Rb,α,f (x)(λ)} ⊂ B1,h ∪B2,h ∪ E.

On the other hand, we have

|Mbh,l,αfh,l(x) −Mb,αf(x)|

≤ sup
r>0

1

|B(x, r)|1−α/n

×
∫
B(x,r)

||bh,l(x) − bh,l(y)||fh,l(y)| − |b(x) − b(y)||f(y)||dy

≤ sup
r>0

1

|B(x, r)|1−α/n

∫
B(x,r)

|bh,l(x) − bh,l(y)||fh,l(y) − f(y)|dy

+ sup
r>0

1

|B(x, r)|1−α/n

∫
B(x,r)

||bh,l(x) − bh,l(y)| − |b(x) − b(y)|||f(y)|dy

≤ Mbh,l,α(fh,l − f)(x) + |bh,l(x) − b(x)|Mαf(x) + Mα((bh,l − b)f)(x)

≤ Mbh,l,α(fh,l − f)(x) + 2∥b∥Lip(Rn)|h|Mαf(x).

Similarly we have

|Abh,l,α,x,fh,l
(r) −Ab,α,x,f (r)| ≤ Mbh,l,α(fh,l − f)(x) + 2∥b∥Lip(Rn)|h|Mαf(x).

Since f ∈ W 1,p(Rn), there exists δ > 0 such that ∥fh,l − f∥Lp(Rn) < ϵ
γ

whenever |h| < δ. The above facts together with (1.1) imply that when
|h| < min{δ, (8γ)−1ϵ},

|B1,h| + |B2,h|

≤ 2

∫
Rn

(4γ(Mbh,l,α(fh,l − f)(x) + 2∥b∥Lip(Rn)|h|Mαf(x)))qdx

≤ 2(4γ)q∥Mbh,l,α(fh,l − f)∥qLq(Rn) + 2∥b∥qLip(Rn)ϵ
q∥Mαf∥qLq(Rn)
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≤ Cα,n,p(2(4γ)q∥bh,l∥L∞(Rn)∥fh,l − f∥qLp(Rn) + 2∥b∥qLip(Rn)∥f∥
q
Lp(Rn)ϵ

q)

≤ Cα,n,p∥b∥Lip(Rn)ϵ
q,

where 1/q = 1/p − α/n and Cα,n,p > 0 is independent of γ and ϵ. Hence, we
get from (2.11) that

{x ∈ B(0, R) : Rbh,l,α,fh,l
(x) ⊈ Rb,α,f (x)(λ)} ≤ Cϵ

when |h| < min{δ, (8γ)−1ϵ}. Here C > 0 is independent of γ and ϵ. This proves
(2.8).

It remains to prove (2.7). Note that Rb,α,f (x) = Rb−h,l,α,f−h,l
(x + hel). It

follows that

{x ∈ B(0, R) : Rb,α,f (x) ⊈ Rb,α,f (x + hel)(λ)}
⊊ {x ∈ B(0, R) : Rb−h,l,α,f−h,l

(x + hel) ⊈ Rb,α,f (x + hel)(λ)}
⊊ {x ∈ B(0, R + 1) : Rb−h,l,α,f−h,l

(x) ⊈ Rb,α,f (x)(λ)} − hel.

This together with (2.8) gives (2.7). □

We now establish the derivative formulas of maximal commutators, which
is the main ingredient of the proof of Theorem 1.4.

Lemma 2.3. Let b ∈ Lip(Rn) and f ∈ W 1,p(Rn) with 1 < p < ∞ and
0 ≤ α < n/p. Let l ∈ {1, 2, . . . , n}. Then

(i) For almost every x ∈ Rn and r ∈ Rb,α,f (x) with 0 < r < ∞, we have

(2.12)

DlMb,αf(x) =
1

|B(x, r)|1−α/n

∫
B(x,r)

(Dl,y|b(x) − b(y)|

+ Dl,x|b(x) − b(y)|)|f(y)|dy

+
1

|B(x, r)|1−α/n

∫
B(x,r)

|b(x) − b(y)|Dl|f |(y)dy.

(ii) For almost every x ∈ Rn and 0 ∈ Rb,α,f (x), we have

(2.13) DlMb,αf(x) = 0.

Proof. Without loss of generality we may assume that f ≥ 0, since Mb,αf =
Mb,α|f | and |f | ∈ W 1,p(Rn) if f ∈ W 1,p(Rn). Let A1 be the set of all x ∈ Rn

for which b is differentiable at x. By Remark 1.2 we see that |Ac
1| = 0. Let

q = pn/(n − αp) and A2 be the set of all x ∈ Rn for which Mαf(x) < ∞
and MαDlf(x) < ∞. Clearly, it follows from the boundedness of Mα that
|Ac

2| = 0. Let R > 0. Invoking Lemma 2.2, there exists a sequence {sk}∞k=1,
sk > 0 and sk → 0 such that limk→∞ π(Rb,α,f (x),Rb,α,f (x + skel)) = 0 for
almost every x ∈ B(0, R). Since f ∈ W 1,p(Rn), then ∥fsk,l−f∥Lp(Rn) → 0 and

∥f l
sk
−Dlf∥Lp(Rn) → 0 as k → ∞. It follows that ∥Mα(fsk,l−f)∥Lq(Rn) → 0 and

∥Mα(f l
sk

−Dlf)∥Lq(Rn) → 0 as k → ∞. We get by Theorem A that Mb,αf ∈
W 1,q(Rn). It follows that ∥(Mb,αf)lsk − DlMb,αf∥Lq(Rn) → 0 as k → ∞.

Note that |blsk(y)−Dlb(y)|f(y) ≤ 2∥b∥Lip(Rn)f(y) and limk→∞ blsk(y) = Dlb(y)
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for almost every y ∈ Rn. By the dominated convergence theorem, we have
∥(blsk −Dlb)f∥Lp(Rn) → 0 as k → ∞. It follows that

∥Mα((blsk −Dlb)f)∥Lq(Rn) → 0 as k → ∞.

It is clear that Fb(x, ·) ∈ Lip(Rn) and ∥Fb(x, ·)∥Lip(Rn) ≤ ∥b∥Lip(Rn) for all
x ∈ Rn. By Remark 1.2, for a fixed x ∈ Rn the function Fb(x, ·) is dif-
ferentiable almost every y ∈ Rn. Moreover, for almost every y ∈ Rn, we
have |Dl,yFb(x, y)| ≤ ∥b∥Lip(Rn). Similarly we see that Fb(·, y) ∈ Lip(Rn) and
∥Fb(·, y)∥Lip(Rn) ≤ ∥b∥Lip(Rn) for all y ∈ Rn. Moreover, for a fixed y ∈ Rn the
function Fb(·, y) is differentiable almost everywhere. Moreover, for almost every
x ∈ Rn, we have |Dl,xFb(x, y)| ≤ ∥b∥Lip(Rn). By the above facts, there exist
a subsequence {hk}∞k=1 of {sk}∞k=1 and a measurable set A3 ⊂ B(0, R) with
|B(0, R) \ A3| = 0 such that for any x ∈ A1, we have that limk→∞ Mα(fhk,l −
f)(x) = 0, limk→∞ Mα(f l

hk
−Dlf)(x) = 0, limk→∞ Mα((blhk

−Dlb)f)(x) = 0,

limk→∞(Mb,αf)lhk
(x)=DlMb,α(f)(x), limk→∞ π(Rb,α,f (x),Rb,α,f (x+hkel))=

0, limk→∞(Fy,b)
l
hk

(x) = Dl,xFb(x, y) for any y ∈ Rn. Let A4 be the set of all
Lebesgue points of f and Dlf . We set

A5 := {x ∈ Rn : Mb,αf(x) = Ab,α,x,f (0) if 0 ∈ Rb,α,f (x)},

A6 :=

∞⋂
k=1

{x ∈ Rn : Mb,αf(x+hkel) = Ab,α,x+hkel,f (0) if 0 ∈ Rb,α,f (x+hkel)},

A7 :=
{
x ∈ Rn : lim

k→∞
(Fy,b)

l
hk

(x) = Dl,xFb(x, y), a.e. y ∈ Rn
}
,

A8 :=
{
x ∈ A1 : lim

r→0+

1

|B(x, r)|

∫
B(x,r)

|Dlb(x) −Dlb(y)|f(y)dy = 0
}
.

One can easily check that |Ac
i | = 0 for any i = 4, 5, 6, 7. Note that |Dlb(x) −

Dlb(y)|f(y) ≤ 2∥b∥Lip(Rn)f for any x ∈ A1 and almost every y ∈ Rn. Applying
the Lebesgue differentiation theorem, we see that |Ac

8| = 0. Hence, we have

|(
⋂8

j=1 Aj)
c| = 0.

Let x ∈
⋂8

j=1 Aj and r ∈ Rb,α,f (x). Then there exists rk ∈ Rb,α,f (x+ hkel)
such that limk→∞ rk = r. It is easy to see that

(2.14) DlMb,αf(x) = lim
k→∞

1

hk
(Mb,αf(x + hkel) −Mb,αf(x)).

We consider two cases:
Case A (r > 0). Due to the fact that limk→∞ rk = r, without loss of

generality we may assume that rk ∈ (0, 2r) for all k ≥ 1. By a change of
variable, we have

Ab,α,x+hkel,f (rk)=
1

|B(x, rk)|1−α/n

∫
B(x,rk)

|b(x+hkel)−b(y+hkel)||fhk,l(y)|dy.
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It follows that

(2.15)

1

hk
(Mb,αf(x + hkel) −Mb,αf(x))

≤ 1

hk
(Ab,α,x+hkel,f (rk) −Ab,α,x,f (rk))

=
1

hk

1

|B(x, rk)|1−α/n

×
∫
B(x,rk)

(Fb(x + hkel, y + hkel)fhk,l(y) − Fb(x, y)f(y))dy

=
1

|B(x, rk)|1−α/n

∫
B(x,rk)

Fb(x, y)f l
hk

(y)dy +
1

|B(x, rk)|1−α/n

×
∫
B(x,rk)

Fb(x + hkel, y + hkel) − Fb(x, y)

hk
fhk,l(y)dy.

Note that∣∣∣ ∫
B(x,rk)

Fb(x, y)f l
hk

(y)dy −
∫
B(x,r)

Fb(x, y)Dlf(y)dy
∣∣∣

≤
∫
B(x,rk)

Fb(x, y)|f l
hk

(y) −Dlf(y)|dy

+
∣∣∣ ∫

B(x,rk)

Fb(x, y)Dlf(y)dy −
∫
B(x,r)

Fb(x, y)Dlf(y)dy
∣∣∣

≤ ∥b∥Lip(Rn)rk|B(x, rk)|1−α/nMα(f l
hk

−Dlf)(x)

+ ∥b∥Lip(Rn)rk

∫
B(x,2r)

|Dlf(y)||(χB(x,rk)(y) − χB(x,r)(y))|dy.

By the Hölder’s inequality, we see that Dlf ∈ L1(B(x, 2r)). Applying the
dominated convergence theorem,

(2.16) lim
k→∞

∫
B(x,rk)

Fb(x, y)f l
hk

(y)dy =

∫
B(x,r)

Fb(x, y)Dlf(y)dy.

On the other hand, we have

(2.17)

∫
B(x,rk)

Fb(x + hkel, y + hkel) − Fb(x, y)

hk
fhk,l(y)dy

=

∫
B(x,rk)

(Fx,b)
l
hk

(y)fhk,l(y)dy

+

∫
B(x,rk)

(Fy+hkel,b)
l
hk

(x)fhk,l(y)dy.
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Note that

(2.18)

∣∣∣ ∫
B(x,rk)

(Fx,b)
l
hk

(y)fhk,l(y)dy −
∫
B(x,r)

Dl,yFb(x, y)f(y)dy
∣∣∣

≤
∫
B(x,rk)

|(Fx,b)
l
hk

(y)fhk,l(y) −Dl,yFb(x, y)f(y)|dy

≤
∫
B(x,rk)

|(Fx,b)
l
hk

(y)||fhk,l(y) − f(y)|dy

+

∫
B(x,rk)

|(Fx,b)
l
hk

(y) −Dl,yFb(x, y)||f(y)|dy.

Observe that∫
B(x,rk)

|(Fx,b)
l
hk

(y)||fhk,l(y) − f(y)|dy

≤ ∥b∥Lip(Rn)|B(x, rk)|1−α/nMα(fhk,l − f)(x) → 0 as k → ∞.

Note that ((Fx,b)
l
hk

(y)−Dl,yFb(x, y))χB(x,rk)(y) → 0 as k → ∞ for almost ev-

ery y ∈ Rn. Moreover, |(Fx,b)
l
hk

(y)−Dl,yFb(x, y)||f(y)| ≤ 2∥b∥Lip(Rn)|f(y)| for

almost every y ∈ Rn. These facts together with the fact that f ∈ L1(B(x, 2r))
and the dominated convergence theorem imply∫

B(x,r)

|(Fx,b)
l
hk

(y) −Dl,yFb(x, y)||f(y)|dy → 0 as k → ∞.

Hence, we get from (2.18) that

(2.19) lim
k→∞

∫
B(x,rk)

(Fx,b)
l
hk

(y)fhk,l(y)dy =

∫
B(x,r)

Dl,yFb(x, y)f(y)dy.

We now prove that

(2.20) lim
k→∞

∫
B(x,rk)

(Fy+hkel,b)
l
hk

(x)fhk,l(y)dy =

∫
B(x,r)

Dl,xFb(x, y)f(y)dy.

By a change of variable,∫
B(x,rk)

(Fy+hkel,b)
l
hk

(x)fhk,l(y)dy =

∫
B(x+hkel,rk)

(Fy,b)
l
hk

(x)f(y)dy.

Hence, for (2.20), it suffices to show that

(2.21) lim
k→∞

∫
B(x+hkel,rk)

(Fy,b)
l
hk

(x)f(y)dy =

∫
B(x,r)

Dl,xFb(x, y)f(y)dy.

Due to limk→∞ hk = 0, without loss of generality we may assume that hk ≤ r
for all k ≥ 1. Note that B(x + hkel, rk) ⊂ B(x, 3r), |(Fy,b)

l
hk

(x)| ≤ ∥b∥Lip(Rn)

and f ∈ L1(B(x, 3r)). An application of the dominated convergence theorem
gives ∣∣∣ ∫

B(x+hkel,rk)

(Fy,b)
l
hk

(x)f(y)dy −
∫
B(x,r)

(Fy,b)
l
hk

(x)f(y)dy
∣∣∣
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≤ ∥b∥Lip(Rn)

∫
B(x,3r)

|f(y)(χB(x+hkel,rk)(y) − χB(x,r)(y))|dy

→ 0 as k → ∞.

Thus, to prove (2.20), it is enough to show that

(2.22) lim
k→∞

∫
B(x,r)

(Fy,b)
l
hk

(x)f(y)dy =

∫
B(x,r)

Dl,xFb(x, y)f(y)dy.

Note that limk→∞(Fy,b)
l
hk

(x) = Dl,xFb(x, y) and |(Fy,b)
l
hk

(x)−Dl,xFb(x, y)| ≤
2∥b∥Lip(Rn). These facts together with the fact that f ∈ L1(B(x, r)) and the
dominated convergence theorem imply (2.22). It follows from (2.17), (2.19)
and (2.20) that

(2.23)

lim
k→∞

∫
B(x,rk)

Fb(x + hkel, y + hkel) − Fb(x, y)

hk
fhk,l(y)dy

=

∫
B(x,r)

(Dl,yFb(x, y) + Dl,xFb(x, y))f(y)dy.

Then we get from (2.14)-(2.16) and (2.23) that

(2.24)

DlMb,αf(x) ≤ 1

|B(x, r)|1−α/n

∫
B(x,r)

(Dl,y|b(x) − b(y)|

+ Dl,x|b(x) − b(y)|)f(y)dy

+
1

|B(x, r)|1−α/n

∫
B(x,r)

|b(x) − b(y)|Dlf(y)dy.

On the other hand, we have

(2.25)

1

hk
(Mb,αf(x + hkel) −Mb,αf(x))

≥ 1

hk
(Ab,α,x+hkel,f (r) −Ab,α,x,f (r))

=
1

hk

1

|B(x, r)|1−α/n

×
∫
B(x,r)

(Fb(x + hkel, y + hkel)fhk,l(y) − Fb(x, y)f(y))dy

=
1

|B(x, r)|1−α/n

∫
B(x,r)

Fb(x, y)f l
hk

(y)dy

+
1

|B(x, r)|1−α/n

×
∫
B(x,r)

Fb(x + hkel, y + hkel) − Fb(x, y)

hk
fhk,l(y)dy.



CONTINUITY OF THE MAXIMAL COMMUTATORS IN SOBOLEV SPACES 475

By (2.14), (2.25) and the arguments similar to those used to derive (2.24),

DlMb,α(f)(x)

≥ 1

|B(x, r)|1−α/n

∫
B(x,r)

(Dl,y(|b(x) − b(y)|) + Dl,x(|b(x) − b(y)|)f(y)dy

+
1

|B(x, r)|1−α/n

∫
B(x,r)

|b(x) − b(y)|Dlf(y)dy.

This together with (2.24) implies that (2.12) holds for almost every x ∈ B(0, R).
Case B (r = 0). Due to 0 ∈ Rb,α,f (x), we have Mb,αf(x) = Ab,α,x,f (0) = 0.

Then we get from (2.14) that

(2.26) DlMb,αf(x) = lim
k→∞

1

hk
Mb,αf(x + hkel) = lim

k→∞

1

hk
Ab,α,x+hkel,f (rk).

If rk = 0 for infinitely many k, then (2.26) gives DlMb,αf(x) = 0. In what
follows, without loss of generality we may assume that rk ∈ (0, 1) for all k ≥ 1.
Since Mb,αf(x) = 0, then |b(x) − b(y)|f(y) = 0 for almost every y ∈ Rn. It
follows that∫

B(x+hkel,rk)

|b(x + hkel) − b(y)|f(y)dy

=

∫
B(x,rk)

|b(x + hkel) − b(y + hkel)|f(y + hkel)dy

≤
∫
B(x,rk)

|b(x + hkel) − b(y + hkel)||f(y + hkel) − f(y)|dy

+

∫
B(x,rk)

|b(x + hkel) − b(y + hkel) − (b(x) − b(y))|f(y)dy.

It follows that

(2.27)

1

hk
Ab,α,x+hkel,f (rk)

≤ 1

|B(x, rk)|1−α/n

∫
B(x,rk)

|b(x + hkel) − b(y + hkel)||f l
hk

(y)|dy

+
1

|B(x, rk)|1−α/n

∫
B(x,rk)

|blhk
(x) − blhk

(y)|f(y)dy.

Observe that

(2.28)

1

|B(x, rk)|1−α/n

∫
B(x,rk)

|b(x + hkel) − b(y + hkel)||f l
hk

(y)|dy

≤ ∥b∥Lip(Rn)rk(Mα(f l
hk

−Dlf)(x) + Mα(Dlf)(x))

→ 0 as k → ∞.

We write
1

|B(x, rk)|1−α/n

∫
B(x,rk)

|blhk
(x) − blhk

(y)|f(y)dy
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≤ 1

|B(x, rk)|1−α/n

∫
B(x,rk)

|blhk
(x) − blhk

(y) − (Dlb(x) −Dlb(y))|f(y)dy

+
1

|B(x, rk)|1−α/n

∫
B(x,rk)

|Dlb(x) −Dlb(y)|f(y)dy

≤ |blhk
(x) −Dlb(x)|Mαf(x) + Mα((blhk

−Dlb)f)(x)

+
1

|B(x, rk)|1−α/n

∫
B(x,rk)

|Dlb(x) −Dlb(y)|f(y)dy

→ 0 as k → ∞.

This together with (2.26)-(2.28) implies DlMb,αf(x) = 0. Since R was arbitrary

and |B(0, R) \ (
⋂8

j=1 Aj)| = 0. This proves Lemma 2.3. □

Finally, we present an important property of W 1,p(Rn) with p > 1. This
play a key role in the proof of Theorem 1.4.

Lemma 2.4. Let p > 1, f ∈ W 1,p(Rn) and {fj}j≥1 ⊂ W 1,p(Rn). Assume that
fj → f in W 1,p(Rn) as j → ∞. Then ∇|fj | → ∇|f | in Lp(Rn) as j → ∞.

Proof. It was shown in [37, Theorem 6.17] that if u ∈ W 1,p(Rn) for p > 1, then
|u| ∈ W 1,p(Rn). Moreover, we have

∇|g| =

 ∇g, in {x ∈ Rn : g(x) > 0} a.e.;
0, in {x ∈ Rn : g(x) = 0} a.e.;
−∇g, in {x ∈ Rn : g(x) < 0} a.e.

Define the sets

X = {x ∈ Rn : f(x) > 0}, Y = {x ∈ Rn : f(x) = 0}, Z = {x ∈ Rn : f(x) < 0},

Xj = {x ∈ Rn : fj(x) > 0}, Yj = {x ∈ Rn : fj(x) = 0}, ∀j ≥ 1,

Zj = {x ∈ Rn : fj(x) < 0}, ∀j ≥ 1.

Observe that∫
X

|∇|fj |(y) −∇|f |(y)|pdy

=

∫
X

|∇|fj |(y) −∇f(y)|pdy

=

∫
X∩(Xj∪Yj)

|∇|fj |(y) −∇f(y)|pdy +

∫
X∩Zj

|∇|fj |(y) −∇f(y)|pdy

=

∫
X∩(Xj∪Yj)

|∇fj(y) −∇f(y)|pdy +

∫
X∩Zj

| − ∇fj(y) −∇f(y)|pdy

≤
∫
X

|∇fj(y) −∇f(y)|pdy

+ Cp

(∫
X∩Zj

|∇fj(y) −∇f(y)|pdy +

∫
X∩Zj

|∇f(y)|pdy
)
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≤ Cp

(
∥∇fj −∇f∥pLp(Rn) +

∫
X∩Zj

|∇f(y)|pdy
)
.

The assumption implies that ∥∇fj −∇f∥pLp(Rn) → 0 as j → ∞. We now prove

that

(2.29)

∫
X∩Zj

|∇f(y)|pdy → 0 as j → ∞.

Assume that (2.29) is not true, there exist ϵ0 > 0 and a subsequence {jk}k≥1

such that ∫
X∩Zjk

|∇f(y)|pdy ≥ ϵ0.

Passing to a further subsequence, if necessary, we may assume that fjk → f
pointwise a.e. Note that∫

X∩Zjk

|∇f(y)|pdy =

∫
Rn

|∇f(y)|pχX∩Zjk
(y)dy.

We also note that χX∩Zjk
(y) → 0 as k → ∞ for almost every y ∈ Rn. In fact,

for almost every y ∈ Zjk we see that fjk(y) < 0. It follows that f(y) ≤ 0 by
our assumption. So y /∈ X. By using dominated convergence one sees that∫

X∩Zjk

|∇f(y)|pdy =

∫
Rn

|∇f(y)|pχX∩Zjk
(y)dy → 0 as k → ∞,

which is a contradiction. Hence, (2.29) holds. So we have∫
X

|∇|fj |(y) −∇|f |(y)|pdy → 0 as j → ∞.

Similarly we can prove that∫
Y

|∇|fj |(y) −∇|f |(y)|pdy → 0 as j → ∞,∫
Z

|∇|fj |(y) −∇|f |(y)|pdy → 0 as j → ∞.

This concludes the proof. □

2.2. Proof of Theorem 1.4

Let b ∈ Lip(Rn) and f ∈ W 1,p(Rn) for 1 < p < ∞. Let 0 ≤ α < n/p and
1/q = 1/p−α/n. Let {fj}j≥1 ⊂ W 1,p(Rn) and fj → f in W 1,p(Rn) as j → ∞.
We want to show that

(2.30) ∥Mb,αfj −Mb,αf∥W 1,q(Rn) → 0 as j → ∞.

By Remark 1.1 we have that ∥Mb,αfj −Mb,αf∥Lq(Rn) → 0 as k → ∞. Hence,
for (2.30) it is enough to prove that

(2.31) ∥DlMb,αfj −DlMb,αf∥Lq(Rn) → 0 when j → ∞
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for any l = 1, 2, . . . , n. We only work with (2.31) for l = 1 and other cases are
analogous. In view of Lemma 2.4, we may assume that all fj ≥ 0 and f ≥ 0.

For convenience, for a fixed x ∈ Rn and arbitrary function g ∈ W 1,p(Rn),
we define the function ub,α,x,g : [0,∞) → R by

ub,α,x,g(0) = 0,

ub,α,x,g(r)

=
1

|B(x, r)|1−α/n

∫
B(x,r)

(D1,y|b(x) − b(y)| + D1,x|b(x) − b(y)|)g(y)dy

+
1

|B(x, r)|1−α/n

∫
B(x,r)

|b(x) − b(y)|D1g(y)dy, 0 < r < ∞.

We define the operator Tα by

Tα(g)(x) = 2∥b∥Lip(Rn)Mαg(x) + 2∥b∥L∞(Rn)Mα(D1g)(x).

It is clear that Tα is sublinear and

(2.32) ∥Tα(g)∥Lq(Rn) ≤ C∥b∥Lip(Rn)∥g∥W 1,p(Rn), ∀g ∈ W 1,p(Rn).

We set Fb(x, y) = |b(x) − b(y)|. It is clear that Fb(x, ·) ∈ Lip(Rn) and
∥Fb(x, ·)∥Lip(Rn) ≤ ∥b∥Lip(Rn) for all x ∈ Rn. By Remark 1.2, for a fixed
x ∈ Rn, the function Fb(x, ·) is differential almost every y ∈ Rn. Moreover,
for almost every y ∈ Rn, we have that |D1,yFb(x, y)| ≤ ∥b∥Lip(Rn). Similarly
we see that Fb(·, y) ∈ Lip(Rn) and ∥Fb(·, y)∥Lip(Rn) ≤ ∥b∥Lip(Rn) for all y ∈
Rn. Moreover, for a fixed y ∈ Rn the function Fb(·, y) is differential almost
everywhere. Moreover, for almost every x ∈ Rn, we have that |D1,xFb(x, y)| ≤
∥b∥Lip(Rn). Hence, we have that for any g ∈ W 1,p(Rn) and almost every x ∈ Rn,

(2.33) |ub,α,x,g(r)| ≤ Tα(g)(x).

Let ϵ > 0. There exists R > 0 such that ∥Tα(f)∥Lq((B(0,R))c) < ϵ. By the
absolute continuity of integration, we can find η > 0 such that ∥Tα(f)∥Lq(A) < ϵ
whenever |A| < η and A is a measurable subset of B(0, R). By the proof of
Lemma 2.3, one sees that for almost every x ∈ Rn, the function ub,α,x,f is
continuous at r = 0. Moreover, in view of the properties of b, one can easily
check that for almost every x ∈ Rn, the function ub,α,x,f is continuous in (0,∞).
Hence, for almost every x ∈ Rn, the function ub,α,x,f is continuous in [0,∞).
On the other hand, by the proof of Lemma 2.3, we see that for almost every
x ∈ Rn,

|ub,α,x,f (x)| ≤ (2∥b∥Lip(Rn)∥f∥Lp(Rn) + 2∥b∥L∞(Rn)∥D1f∥Lp(Rn))|B(x, r)|−1/q.

This yields that for almost every x ∈ Rn, we have limr→∞ ub,α,x,f (x) = 0.
Therefore, we have that for almost every x ∈ Rn, the function ub,α,x,f is uni-
formly continuous on [0,∞). It follows that there exists δx > 0 such that

|ub,α,x,f (r1) − ub,α,x,f (r2)| < |B(0, R)|−1/qϵ whenever |r1 − r2| < δx.
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So we can write

B(0, R) :=
( ∞⋃

j=1

{
x ∈ B(0, R) : δx >

1

j

})
∪ E,

where |E| = 0. So there exists δ > 0 such that

|{x ∈ B(0, R) : |ub,α,x,f (r1) − ub,α,x,f (r2)| ≥ |B(0, R)|−1/qϵ

for some r1, r2 with |r1 − r2| < δ}|

=: |G1| <
η

2
.

Invoking Lemma 2.1, there exists N1 ∈ N \ {0} such that

|{x ∈ B(0, R) : Rb,α,fj (x) ⊈ Rb,α,f (x)(δ)}| =: |Bj | < η

2
, ∀j ≥ N1.

Let us fix j ≥ 1. By (2.33) we see that for any r ∈ [0,∞) and almost every
x ∈ Rn,

(2.34) |ub,α,x,fj (r) − ub,α,x,f (r)| = |ub,α,x,fj−f (r)| ≤ Tα(fj − f)(x).

In view of Lemma 2.2, we get from (2.34) that for almost every x ∈ Rn,

(2.35)

|D1Mb,αfj(x) −D1Mb,αf(x)|
= |ub,α,x,fj (r1) − ub,α,x,f (r2)|
≤ |ub,α,x,fj (r1) − ub,α,x,f (r1)| + |ub,α,x,f (r1) − ub,α,x,f (r2)|
≤ Tα(fj − f)(x) + |ub,α,x,f (r1) − ub,α,x,f (r2)|

for any r1 ∈ Rb,α,fj (x) and r2 ∈ Rb,α,f (x). By our assumption and (2.32),
there exists N2 ∈ N \ {0} such that

(2.36) ∥Tα(fj − f)∥Lq(Rn) < ϵ, ∀j ≥ N2.

If x ∈ B(0, R) \ (G1 ∩ Bj), then we can choose r1 ∈ Rb,α,fj (x) and r2 ∈
Rb,α,f (x) such that |r1 − r2| < δ and

|ub,α,x,f (r1) − ub,α,x,f (r2)| < |B(0, R)|−1/qϵ.

On the other hand, we get by (2.32) that for almost every x ∈ Rn,

|ub,α,x,f (r1) − ub,α,x,f (r2)| ≤ 2Tα(f)(x)

for any r1 ∈ Rb,α,fj (x) and r2 ∈ Rb,α,f (x). Hence, we get from (2.36) that for
almost every x ∈ Rn,

(2.37)

|D1Mb,αfj(x) −D1Mb,αf(x)|

≤ Tα(fj − f)(x) + |B(0, R)|−1/qϵχB(0,R)\(G1∪Bj)(x)

+ 2Tα(f)(x)χG1∪Bj∪(B(0,R))c(x).

Observe that |G1 ∪Bj | < η for j ≥ B1. By (2.37) and Minkowski’s inequality,
we have

∥D1Mb,αfj −D1Mb,αf∥Lq(Rn)
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≤ ∥Tα(fj − f)∥Lq(Rn) + ∥|BR|−1/qϵ∥Lq(BR) + 2∥Tα(f)∥Lq(G1∪Bj∪Bc
R) ≤ 6ϵ

for any j ≥ max{N1, N2}. This gives that

lim
j→∞

∥D1Mb,αfj −D1Mb,αf∥Lq(Rn) = 0.

Then Theorem 1.4 is proved. □

3. Proof of Theorem 1.8

In this section we prove Theorem 1.8. Let us give some notation and lemmas.

3.1. Preliminary notation and lemmas

Denote δ(x) = dist(x,Ωc). According to Rademacher’s theorem, as a Lips-
chitz function δ is differentiable almost everywhere in Ω. Moreover, |∇δ(x)| = 1
for almost every x ∈ Ω. The notation K ⊂⊂ Ω means that K is open, bounded
and K ⊂ Ω. It is well known that uh,i → u in Lp(K) for all K ⊂⊂ Ω when
h → 0, and if u ∈ W 1,p(Ω), then ui

h → Diu in Lp(k) when h → 0 (see [17, 7.11]).
Let b ∈ L∞(Ω) and f ∈ Lp(Ω) with p ∈ (1, n) and α ∈ [1, n/p). For every

x ∈ Ω, we define the function Ab,α,x,f (r) : [0, δ(x)] → [−∞,∞] by

Ab,α,x,f (r) =


0, if r = 0;

1

|B(x, r)|1−α/n

∫
B(x,r)

|b(x) − b(y)||f(y)|dy, if r ∈ (0, δ(x)].

Define the set Ib,α,f (x) by

Ib,α,f (x) = {r ∈ [0, δ(x)] : Mb,α,Ωf(x) = Ab,α,x,f (r)}.
When α = 0, we denote Ib,α,f (x) = Ib,f (x). By the Lebesgue differentiation
theorem, we see that limr→0+ Ab,α,x,f (r) = 0 for almost everywhere x ∈ Ω. It
follows that the functions Ab,α,x,f are continuous on (0, δ(x)] for all x ∈ Ω and
at r = 0 for almost every x ∈ Ω.

By the arguments similar to those used to derive [32, Lemma 3.2] and Lemma
2.1, we can get the following result. The details are omitted.

Lemma 3.1. Let b ∈ L∞(Ω), p ∈ (1,∞) and fj → f in Lp(Ω) as j → ∞.
Assume that α = 0 or α ∈ [1, n/p). Then for all R > 0 and λ > 0, it holds that

lim
j→∞

|{x ∈ ΩR : Ib,α,fj (x) ⊈ Ib,α,f (x)(λ)}| = 0.

Here ΩR = Ω ∩B(0, R).

We now establish the following lemma, which tells us how close the sets
Ib,α,f (x) and Ib,α,f (x + hel) are when h is small enough.

Lemma 3.2. Let b ∈ Lip(Ω) and f ∈ Lp(Ω) for some p ∈ (1,∞). Assume that
α = 0 or α ∈ [1, n/p). Then for K ⊂⊂ Ω, λ > 0 and l = 1, 2, . . . , n, it holds
that

(3.1) |{x ∈ K : π(Ib,α,f (x), Ib,α,f (x + hel)) > λ}| → 0 when h → 0.
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Proof. The proof is similar to that of [32, Lemma 3.3]. However, some modifi-
cations are needed. For (3.1) it suffices to show that

(3.2) lim
h→0

|{x ∈ K : Ib,α,f (x + hel) ⊈ Ib,α,f (x)(λ)}| = 0,

(3.3) lim
h→0

|{x ∈ K : Ib,α,f (x) ⊈ Ib,α,f (x + hel)(λ)}| = 0.

We only prove (3.2) since (3.3) can be proved similarly. Let ϵ ∈ (0, 1) and
λ > 0. An argument similar to (2.9) shows that there exist a positive integer
γ = γ(λ, ϵ) and a measurable set E with |E| < ϵ such that

(3.4)
K ⊂ {x∈K : Ab,α,x,f (r)<Mb,α,Ωf(x)−γ−1 if d(r, Ib,α,f (x))>λ} ∪ E

=: G ∪ E.

Fix h ∈ R, and let

B1,h := {x ∈ K : |Mb,α,Ωf(x + hel) −Mb,α,Ωf(x)| > (4γ)−1},
B2,h := {x ∈ K : Mbh,l,α,Ω(fh,l − f)(x) + 2∥b∥Lip(Ω)|h|Mα,Ωf(x) > (2γ)−1},
B3,h := {x ∈ Ω : ∃ r ∈ [δ(x) − 2|h|, δ(x + hel)] such that

|Ab,α,x+hel,f (r) −Ab,α,x+hel,f (δ(x + hel) − |h|)| > (8γ)−1}.
Firstly we prove that

(3.5)
{x ∈ K : Ib,α,f (x + hel) ⊈ Ib,α,f (x)(2λ)}

⊂ B1,h ∪B2,h ∪ (B3,h − hel) ∪ E =: Bh

when h is small enough. Let h0 ∈ (0, λ) be such that K(2h0) ⊂ Ω. For (3.5)

it is enough to prove that for x ∈ G \ Bh with |h| < 1
2 min{h0, δ(x)}, there

exists r ∈ Ib,α,f (x + hel) such that d(r, Ib,α,f (x)) ≤ 2λ. If not, we assume that
d(r, Ib,α,f (x)) > 2λ and consider two cases:

Case (i) (r < δ(x) − |h|). In view of (3.4),

(3.6)

Mb,α,Ωf(x + hel)

= Ab,α,x+hel,f (r) ≤ Ab,α,x+hel,f (r) −Ab,α,x,f (r) + Ab,α,x,f (r)

≤ |Ab,α,x+hel,f (r) −Ab,α,x,f (r)| + Mb,α,Ωf(x) − γ−1.

By the argument similar to the proof of Lemma 2.2,

(3.7)
|Ab,α,x+hel,f (t) −Ab,α,x,f (t)|

≤ Mbh,l,α,Ω(fh,l − f)(x) + 2∥b∥Lip(Ω)|h|Mα,Ωf(x)

for any t ∈ (0,min{δ(x), δ(x + hel)}). From (3.6) and (3.7) we see that

Mb,α,Ωf(x + hel)

≤ Mbh,l,α,Ω(fh,l − f)(x) + 2∥b∥Lip(Ω)|h|Mα,Ωf(x) + Mb,α,Ωf(x) − γ−1

≤ (2γ)−1 + Mb,α,Ωf(x) − γ−1 ≤ Mb,α,Ωf(x) − (2γ)−1.

So |Mb,α,Ωf(x + hel) − Mb,α,Ωf(x)| ≥ (2γ)−1. This gives x ∈ B1,h and a
contradiction.
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Case (ii) (r ∈ [δ(x) − |h|, δ(x + hel)]). In this case we note that d(δ(x) −
|h|, Ib,α,f (x)) > λ, δ(x+ hel)− |h| < δ(x) and δ(x+ hel)− r ∈ [0, 2|h|]. Hence,
we have |r − (δ(x + hel) − |h|)| = ||h| − (δ(x + hel) − r)| ≤ |h| and

d(δ(x+hel)−|h|, Ib,α,f (x)) ≥ d(r, Ib,α,f (x))−|r−(δ(x+hel)−|h|)| > 2λ−|h| > λ.

Combining (3.7) with (3.4) yields that

Mb,α,Ωf(x + hel)

= Ab,α,x+hel,f (r)

≤ |Ab,α,x+hel,f (r) −Ab,α,x+hel,f (δ(x + hel) − |h|)|
+ |Ab,α,x+hel,f (δ(x + hel) − |h|) −Ab,α,x,f (δ(x + hel) − |h|)|
+ Ab,α,x,f (δ(x + hel) − |h|)

≤ (8γ)−1 + Mbh,l,α,Ω(fh,l − f)(x) + 2∥b∥Lip(Ω)|h|Mα,Ωf(x)

+ Mb,α,Ωf(x) − γ−1

≤ (8γ)−1 + (2γ)−1 + Mb,α,Ωf(x) − γ−1 ≤ Mb,α,Ωf(x) − (4γ)−1,

which leads to |Mb,α,Ωf(x) −Mb,α,Ωf(x + hel)| > (4γ)−1 and x ∈ B1,h. This
is a contradiction. Hence (3.5) is proved.

In view of (3.5), for (3.2), it is enough to show that

(3.8) lim
h→0

|Bh| = 0.

Clearly, |B3,h−hel| → 0 when h → 0. Let qα = np/(n−α). By Remark 1.5 we
see that Mb,Ωf ∈ Lp(Ω). So Mb,α,Ωf(· + hel) → Mb,α,Ωf in Lqα(K) as h → 0.
There exists δ1 > 0 such that ∥Mb,α,Ωf(· + hel) −Mb,α,Ωf∥Lqα (K) < (4γ)−1ϵ
when |h| < δ1. It follows that

(3.9) |B1,h| ≤ (4γ)qα∥Mb,α,Ωf(· + hel) −Mb,α,Ωf∥qαLqα (Ω) < ϵqα

when |h| < δ1. On the other hand, by the arguments similar to those used to
derive Lemma 2.2, there exists δ2 > 0 such that

(3.10) |B2,h| ≤ Cϵqα

for some C > 0 when |h| < min{δ2, (8γ)−1ϵ}. Here C > 0 is independent of γ
and ϵ. Combining (3.10) with (3.9) implies that

|B1,h| + |B2,h| < Cϵ

when |h| < min{δ1, δ2, (8γ)−1ϵ}. Here C > 0 is independent of γ and ϵ. This
proves (3.8). Lemma 3.2 is now proved. □

The following lemma presents the derivative formulas of local maximal com-
mutator, which plays a pivotal role in the proof of Theorem 1.8.

Lemma 3.3. Let f ∈ W 1,p(Ω) for some p ∈ (1,∞) and b ∈ Lip(Ω). Assume
|Ω| < ∞. Then
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(i) For any l ∈ {1, 2, . . . , n}, almost every x ∈ Ω and r ∈ Ib,f (x) with 0 <
r < δ(x), it holds that

(3.11)

DlMb,Ωf(x)

=
1

|B(x, r)|

∫
B(x,r)

(Dl,y|b(x) − b(y)| + Dl,x|b(x) − b(y)|)|f(y)|dy

+
1

|B(x, r)|

∫
B(x,r)

|b(x) − b(y)|Dl|f |(y)dy.

(ii) For any l ∈ {1, 2, . . . , n}, almost every x ∈ Ω and 0 ∈ Ib,f (x), it holds
that

(3.12) DlMb,Ωf(x) = 0.

Proof. Without loss of generality we may assume f ≥ 0. Fix l ∈ {1, 2, . . . , n}.
Note that Fb(x, ·) ∈ Lip(Ω) for all x ∈ Ω and Fb(·, y) ∈ Lip(Ω) for all y ∈ Ω.
It follows that |(Fx,b)

l
h(y)| ≤ ∥b∥Lip(Ω) and |(Fy,b)

l
h(x)| ≤ ∥b∥Lip(Ω) for all

x, y ∈ Ω. Moreover, for a fixed x ∈ Ω the function Fb(x, ·) is differentiable
almost every y ∈ Ω. For almost every y ∈ Ω, we have |Dl,yFb(x, y)| ≤ ∥b∥Lip(Ω).
Similarly we have Fb(·, y) ∈ Lip(Ω) and ∥Fb(·, y)∥Lip(Ω) ≤ ∥b∥Lip(Ω) for all
y ∈ Ω. Moreover, for a fixed y ∈ Ω the function Fb(·, y) is differentiable almost
everywhere. Moreover, for almost every x ∈ Ω, we have that |Dl,xFb(x, y)| ≤
∥b∥Lip(Ω). Let K ⊂⊂ Ω. In view of Lemma 3.2, there exists {sk}∞k=1 ⊂ (0,∞)
with sk → 0 such that

lim
k→∞

π(Ib,f (x), Ib,f (x + skel)) = 0

for almost every x ∈ K. By Remark 1.6 we see that |blsk(y) − Dlb(y)|f(y) ≤
2∥b∥Lip(Ω)f(y) and limk→∞ blsk(y) = Dlb(y) for almost every y ∈ Ω. Then

limk→∞ ∥fsk,l−f∥Lp(K) =0, limk→∞ ∥f l
sk
−Dlf∥Lp(K) =0, limk→∞ ∥MΩ(fsk,l−

f)∥Lp(K) =0, limk→∞ ∥MΩ(f(blsk −Dlb))∥Lp(K) = 0, limk→∞ ∥MΩ(((Fx,b)
l
sk

−
Dl,yFb(x, ·))f)∥Lp(K) = 0 and limk→∞ ∥Mb,Ω(f l

sk
−Dlf)∥Lp(K) = 0. By The-

orem B, we have Mb,Ωf ∈ W 1,p(Ω). It holds that limk→∞ ∥(Mb,Ωf)lsk −
DlMb,Ωf∥Lp(K) = 0. From the above facts, there exist a subsequence {hk}∞k=1

of {sk}∞k=1 and a measurable set B1 ⊂ K such that |K\B1| = 0 and for any x ∈
B1, we have that limk→∞ MΩ(f(blhk

−Dlb))(x) = 0, limk→∞ MΩ(fhk,l−f)(x) =

0, limk→∞ Mb,Ω(f l
hk
−Dlf)(x) = 0, limk→∞ MΩ(((Fx,b)

l
hk
−Dl,yFb(x, ·))f)(x) =

0, limk→∞(Mb,Ω(f))lhk
(x) = DlMb,Ωf(x), limk→∞ π(Ib,f (x), Ib,f (x+hkel)) = 0

and limk→∞(Fy,b)
l
hk

(x) = Dl,xFb(x, y) for all y ∈ Ω. We set

B2 := {x ∈ K : Mb,Ωf(x) = Ab,x,f (0) if 0 ∈ Ib,f (x)},

B3 :=

∞⋂
k=1

{x ∈ K : Mb,Ωf(x + hkel) = Ab,x+hkel,f (0) if 0 ∈ Ib,f (x + hkel)},

B4 :=
{
x ∈ K : lim

r→0

1

|B(x, r)|

∫
B(x,r)

|Dlb(x) −Dlb(y)|f(y)dy = 0
}
,
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B5 :=
{
x ∈ Ω : lim

k→∞
(Fy,b)

l
hk

(x) = Dl,xFb(x, y), a.e. y ∈ Ω
}
.

Clearly, |K \Bi| = 0 for any 2 ≤ i ≤ 5. Let B6 be the set of all x ∈ Ω for which
b is differentiable at x. By Remark 1.2 we see that |Bc

6| = 0. Let B7 be the set
of all x ∈ Ω for which MΩf(x) < ∞ and MΩDlf(x) < ∞. It follows from the
boundedness of MΩ that |Bc

7| = 0. Let B8 be the set of all Lebesgue points of

f . Clearly, |Bc
8| = 0. Hence, |(

⋂8
j=1 Bj)

c| = 0.

Let us fix x ∈
⋂8

j=1 Bj and r ∈ Ib,f (x) satisfying r < δ(x). We note that

limk→∞ π(Ib,f (x), Ib,f (x + hekel)) = 0. There exists radii rk ∈ Ib,f (x + hkel)
such that limk→∞ rk = r. It is easy to see that

(3.13) DlMb,Ωf(x) = lim
k→∞

1

hk
(Mb,Ωf(x + hkel) −Mb,Ωf(x)).

We consider two cases:
Case A (r > 0). We may assume without loss of generality that all rk ∈

(0, δ(x)). Note that limk→∞ hk = 0. Hence, we may assume that rk + hk ∈
(0,min{2r, δ(x)}) for all k ≥ 1. In view of (2.15) and (2.17),

(3.14)

1

hk
(Mb,Ωf(x + hkel) −Mb,Ωf(x))

≤ 1

|B(x, rk)|

∫
B(x,rk)

Fb(x, y)f l
hk

(y)dy

+
1

|B(x, rk)|

(∫
B(x,rk)

(Fx,b)
l
hk

(y)fhk,l(y)dy

+

∫
B(x,rk)

(Fy+hkel,b)
l
hk

(x)fhk,l(y)dy
)
.

An argument similar to (2.16) gives that

(3.15) lim
k→∞

∫
B(x,rk)

Fb(x, y)f l
hk

(y)dy =

∫
B(x,r)

Fb(x, y)Dlf(y)dy.

We now prove that

(3.16) lim
k→∞

∫
B(x,rk)

(Fx,b)
l
hk

(y)fhk,l(y)dy =

∫
B(x,r)

Dl,yFb(x, y)f(y)dy

and

(3.17) lim
k→∞

∫
B(x,rk)

(Fy+hkel,b)
l
hk

(x)fhk,l(y)dy =

∫
B(x,r)

Dl,xFb(x, y)f(y)dy.

Note that Dl,yFb(x, ·)f(·) ∈ L1(Ω). This gives

lim
k→∞

∫
B(x,rk)

Dl,yFb(x, y)f(y)dy =

∫
B(x,r)

Dl,yFb(x, y)f(y)dy.

It follows that∣∣∣ ∫
B(x,rk)

(Fx,b)
l
hk

(y)fhk,l(y)dy −
∫
B(x,r)

Dl,yFb(x, y)f(y)dy
∣∣∣
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≤
∫
B(x,rk)

|(Fx,b)
l
hk

(y)fhk,l(y) −Dl,yFb(x, y)f(y)|dy

≤
∫
B(x,rk)

|(Fx,b)
l
hk

(y)||fhk,l(y) − f(y)|dy

+

∫
B(x,rk)

|(Fx,b)
l
hk

(y) −Dl,yFb(x, y)||f(y)|dy

≤ |B(x, rk)|(∥b∥Lip(Ω)MΩ(fhk,l − f)(x)

+ MΩ(((Fx,b)
l
hk

−Dl,yFb(x, ·))f)(x)),

which gives (3.16).
We now prove (3.17). Note that |(Fy+hkel,b)

l
hk

(x)| ≤ ∥b∥Lip(Ω). This yields
that ∫

B(x,rk)

(Fy+hkel,b)
l
hk

(x)(fhk,l(y) − f(y))dy

≤ 2∥b∥Lip(Ω)|B(x, rk)|MΩ(fhk,l − f)(x).

Thus, for (3.17) it is enough to prove that

(3.18) lim
k→∞

∫
B(x,rk)

(Fy+hkel,b)
l
hk

(x)f(y)dy =

∫
B(x,r)

Dl,xFb(x, y)f(y)dy.

By a change of variable,∫
B(x,rk)

(Fy+hkel,b)
l
hk

(x)f(y)dy =

∫
B(x+hkel,rk)

(Fy,b)
l
hk

(x)fhk,l(y)dy.

Note that∣∣∣ ∫
B(x+hkel,rk)

(Fy,b)
l
hk

(x)fhk,l(y)dy −
∫
B(x+hkel,rk)

(Fy,b)
l
hk

(x)f(y)dy
∣∣∣

≤ ∥b∥Lip(Ω)

∫
B(x+hkel,rk)

|fhk,l(y) − f(y)|dy

≤ ∥b∥Lip(Ω)

∫
B(x,rk+hk)

|fhk,l(y) − f(y)|dy

≤ ∥b∥Lip(Ω)|B(x, rk + hk)|MΩ(fhk,l − f)(x).

It follows that

lim
k→∞

∫
B(x+hkel,rk)

(Fy,b)
l
hk

(x)fhk,l(y)dy = lim
k→∞

∫
B(x+hkel,rk)

(Fy,b)
l
hk

(x)f(y)dy.

Therefore, to prove (3.18), it suffices to show that

(3.19) lim
k→∞

∫
B(x+hkel,rk)

(Fy,b)
l
hk

(x)f(y)dy =

∫
B(x,r)

Dl,xFb(x, y)f(y)dy.

Note that (Fy,b)
l
hk

(x)χB(x+hkel,rk)(y) → Dl,xFb(x, y)χB(x,r)(y) as k → ∞ and

|(Fy,b)
l
hk

(x)χB(x+hkel,rk)(y) − Dl,xFb(x, y)χB(x,r)(y)| ≤ 2∥b∥Lip(Ω) for almost

every y ∈ Ω. Moreover, we have that f ∈ L1(Ω) by the fact that |Ω| < ∞ and
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Hölder’s inequality. By the dominated convergence theorem, we have (3.19).
It follows from (3.13)-(3.17) that for almost every x ∈ K,

(3.20)

DlMb,Ωf(x)

≤ 1

|B(x, r)|

∫
B(x,r)

(Dl,y|b(x) − b(y)| + Dl,x|b(x) − b(y)|)f(y)dy

+
1

|B(x, r)|

∫
B(x,r)

|b(x) − b(y)|Dlf(y)dy.

By the arguments similar to those used to derive Lemma 2.3 and derive (3.20),
we have that for almost every x ∈ K,

(3.21)

DlMb,Ωf(x)

≥ 1

|B(x, r)|

∫
B(x,r)

(Dl,y|b(x) − b(y)| + Dl,x|b(x) − b(y)|)f(y)dy

+
1

|B(x, r)|

∫
B(x,r)

|b(x) − b(y)|Dlf(y)dy.

Combining (3.21) with (3.20) implies that (3.11) holds for almost every x ∈ K.
Case B (r = 0). Because of 0 ∈ Ib,f (x), then Mb,Ωf(x) = Ab,x,f (0) = 0. We

write

(3.22)

DlMb,Ωf(x) = lim
k→∞

1

hk
Mb,Ωf(x + hkel)

= lim
k→∞

1

hk
Ab,x+hkel,f (rk).

If we have rk = 0 for infinitely many k, then DlMb,Ωf(x) = 0. Otherwise,
there exists k0 ∈ N such that rk > 0 when k ≥ k0. Since Mb,Ωf(x) = 0, then
|b(x) − b(y)|f(y) = 0 for almost every y ∈ B(x, δ(x)). An argument similar to
(2.27) gives that

(3.23)

1

hk
Ab,x+hkel,f (rk)

≤ 1

|B(x, rk)|

∫
B(x,rk)

|b(x + hkel) − b(y + hkel)||f l
hk

(y)|dy

+
1

|B(x, rk)|

∫
B(x,rk)

|blhk
(x) − blhk

(y)|f(y)dy.

It is easy to see that

(3.24)

1

|B(x, rk)|

∫
B(x,rk)

|b(x + hkel) − b(y + hkel)||f l
hk

(y)|dy

≤ ∥b∥Lip(Rn)rk(MΩ(f l
hk

−Dlf)(x) + MΩ(Dlf)(x)) → 0 as k → ∞
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and

(3.25)

1

|B(x, rk)|

∫
B(x,rk)

|blhk
(x) − blhk

(y)|f(y)dy

≤ |blhk
(x) −Dlb(x)|MΩf(x) + MΩ((blhk

−Dlb)f)(x)

+
1

|B(x, rk)|

∫
B(x,rk)

|Dlb(x) −Dlb(y)|f(y)dy

→ 0 as k → ∞.

It follows from (3.22)-(3.25) that (3.12) holds for almost every x ∈ K. Since
K ⊂⊂ Ω is arbitrary, this gives the claim in Ω. □

Applying the arguments similar to those used to derive Lemma 3.3, we can
get the following result. The details are omitted.

Lemma 3.4. Let f ∈ W 1,p(Ω) with p ∈ (1, n) and b ∈ Lip(Ω). Assume that
α ∈ [1, n/p) and |Ω| < ∞. Then

(i) For any l ∈ {1, 2, . . . , n}, almost every x ∈ Ω and r ∈ Ib,α,f (x) with
0 < r < δ(x), it holds that

DlMb,α,Ωf(x)

=
1

|B(x, r)|1−α/n

∫
B(x,r)

(Dl,y|b(x) − b(y)| + Dl,x|b(x) − b(y)|)|f(y)|dy

+
1

|B(x, r)|1−α/n

∫
B(x,r)

|b(x) − b(y)|Dl|f |(y)dy.

(ii) For any l ∈ {1, 2, . . . , n}, almost every x ∈ Ω and 0 ∈ Ib,α,f (x), it holds
that

DlMb,α,Ωf(x) = 0.

Lemma 3.5. Let f ∈ W 1,p(Ω) with 1 < p < ∞ and b ∈ Lip(Ω). Let {hk}k≥1 ⊂
(0,∞) be such that limk→∞ hk = 0 and l ∈ {1, 2, . . . , n}. Assume that |Ω| < ∞
and δ(x) ≤ δ(x+hkel) for almost every x ∈ Ω and all k ≥ 1. Then, for almost
every x ∈ Ω,

(3.26)

lim
k→∞

∫
B(x,δ(x))

Fb(x + hkel, y + hkel)fhk,l(y) − Fb(x, y)f(y)

hk
dy

=

∫
B(x,δ(x))

(Dl,yFb(x, y) + Dl,xFb(x, y))f(y)dy

+

∫
B(x,δ(x))

Fb(x, y)Dlf(y)dy.

Proof. We shall adapt the method of [32] to prove this lemma. It is not difficult
to see that ∫

B(x,δ(x))

Fb(x + hkel, y + hkel)fhk,l(y) − Fb(x, y)f(y)

hk
dy
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=

∫
B(x,δ(x))

Fb(x, y)f l
hk

(y)dy +

∫
B(x,δ(x))

(Fx,b)
l
hk

(y)fhk,l(y)dy(3.27)

+

∫
B(x,δ(x))

(Fy+hkel,b)
l
hk

(x)fhk,l(y)dy,

where

(Fx,b)
l
hk

(y) =
1

hk
(Fb(x, y + hkel) − Fb(x, y)),

(Fy,b)
l
hk

(x) =
1

hk
(Fb(x + hkel, y) − Fb(x, y)).

In view of (3.27), to prove (3.26) it is enough to show that for almost every
x ∈ Ω,

(3.28) lim
k→∞

∫
B(x,δ(x))

Fb(x, y)f l
hk

(y)dy =

∫
B(x,δ(x))

Fb(x, y)Dlf(y)dy;

(3.29) lim
k→∞

∫
B(x,δ(x))

(Fx,b)
l
hk

(y)fhk,l(y)dy =

∫
B(x,δ(x))

Dl,yFb(x, y)f(y)dy;

(3.30)

lim
k→∞

∫
B(x,δ(x))

(Fy+hkel,b)
l
hk

(x)fhk,l(y)dy

=

∫
B(x,δ(x))

Dl,xFb(x, y)f(y)dy.

We first prove (3.28). Note that f l
hk

→ Dlf in Lp
loc(Ω). Let x ∈ Ω. By

[35, Lemma 2.8], we can get

(3.31) |f l
hk

(y)| ≤ C(M(|∇f |χΩ)(y) + M(|∇f |χΩ)(y + hkel)) =: CΓ1(y)

for almost every y ∈ B(x, δ(x)). By the Lp bounds of M and Minkowski’s
inequality, one can easily check that ∥Γ1∥Lp(B(x,δ(x))) ≤ C∥∇f∥Lp(Ω). Hence,

Γ1 ∈ L1(Ω). From the above we have that for a fixed t ∈ (0, δ(x)],

(3.32) lim
k→∞

∫
B(x,δ(x)−t)

|f l
hk

(y) −Dlf(y)|dy = 0.

By the absolute continuity of the integral, then for every ϵ > 0, there exists
t0 > 0 such that for any t ∈ (0, t0),

(3.33)

∫
B(x,δ(x))\B(x,δ(x)−t)

|f l
hk

(y) −Dlf(y)|dy

≤ C

∫
B(x,δ(x))\B(x,δ(x)−t)

(|Γ1(y)| + |Dlf(y)|)dy < Cϵ.

Hence, we get from (3.32) and (3.33) that∣∣∣ ∫
B(x,δ(x))

Fb(x, y)f l
hk

(y)dy −
∫
B(x,δ(x))

Fb(x, y)Dlf(y)dy
∣∣∣
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≤
∫
B(x,δ(x))

Fb(x, y)|f l
hk

(y) −Dlf(y)|dy

≤ 2∥b∥L∞(Ω)

∫
B(x,δ(x))

|f l
hk

(y) −Dlf(y)|dy → 0 as k → ∞.

This gives (3.28).
Now we prove (3.29). Without loss of generality we may assume that all hk ∈

(0, 1). Note that |(Fx,b)
l
hk

(y)| ≤ ∥b∥Lip(Ω) and |Dl,yFb(x, y)| ≤ ∥b∥Lip(Ω) for any
x ∈ Ω and almost every y ∈ Ω. Moreover, we get by (3.31) that |fhk,l(y)| ≤
CΓ1(y)|hk| + |f(y)| ≤ CΓ1(y) + |f(y)| for almost every y ∈ B(x, δ(x)). It
follows that

|(Fx,b)
l
hk

(y)fhk,l(y) −Dl,yFb(x, y)f(y)| ≤ C∥b∥Lip(Ω)(Γ1(y) + |f(y)|)

for almost every y ∈ B(x, δ(x)). An argument similar to (3.33) shows that for
every ϵ > 0, there exists t1 > 0 such that for any t ∈ (0, t1),

(3.34)

∫
B(x,δ(x))\B(x,δ(x)−t)

|(Fx,b)
l
hk

(y)fhk,l(y) −Dl,yFb(x, y)f(y)| < Cϵ.

Note that fhk,l → f in Lp
loc(Ω). For a fixed t ∈ (0, δ(x)], we have

(3.35)

∣∣∣ ∫
B(x,δ(x)−t)

(Fx,b)
l
hk

(y)fhk,l(y)dy

−
∫
B(x,δ(x)−t)

(Fx,b)
l
hk

(y)f(y)dy
∣∣∣

≤ ∥b∥Lip(Ω)

∫
B(x,δ(x)−t)

|fhk,l(y) − f(y)|dy → 0 as k → ∞.

Moreover, noting that (Fx,b)
l
hk

(y) → DlFb(x, y) as k → ∞ for all x ∈ Ω and
almost every y ∈ Ω. Applying the dominated convergence theorem,

(3.36) lim
k→∞

∫
B(x,δ(x)−t)

(Fx,b)
l
hk

(y)f(y)dy =

∫
B(x,δ(x)−t)

DlFb(x, y)f(y)dy.

Combining (3.36) with (3.34) and (3.35) gives (3.29).
It remains to conclude (3.30). Note that |(Fy+hkel,b)

l
hk

(x)| ≤ ∥b∥Lip(Ω) and
|Dl,xFb(x, y)| ≤ ∥b∥Lip(Ω) for almost x ∈ Ω and every y ∈ Ω. By the argument
similar to those used to derive (3.34) and (3.35), then for every ϵ > 0, there
exists t2 > 0 such that for any t ∈ (0, t2),

(3.37)

∫
B(x,δ(x))\B(x,δ(x)−t)

|(Fy+hkel,b)
l
hk

(x) −Dl,xFb(x, y)f(y)| < Cϵ.
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Moreover, for a fixed t ∈ (0, δ(x)], we have

(3.38)

∣∣∣ ∫
B(x,δ(x)−t)

(Fy+hkel,b)
l
hk

(x)fhk,l(y)dy

−
∫
B(x,δ(x)−t)

(Fy+hkel,b)
l
hk

(x)f(y)dy
∣∣∣

≤ ∥b∥Lip(Ω)

∫
B(x,δ(x)−t)

|fhk,l(y) − f(y)|dy → 0 as k → ∞.

In view of (3.37) and (3.38), for (3.30) it is enough to show that for a fixed
t ∈ (0,min{δ(x), t2}),

(3.39)

lim
k→∞

∫
B(x,δ(x)−t)

(Fy+hkel,b)
l
hk

(x)f(y)dy

=

∫
B(x,δ(x)−t)

Dl,xFb(x, y)f(y)dy.

By a change of variable,∫
B(x,δ(x)−t)

(Fy+hkel,b)
l
hk

(x)f(y)dy =

∫
B(x+hkel,δ(x)−t)

(Fy,b)
l
hk

(x)fhk,l(y)dy.

Since hk → 0 as k → ∞, then we may assume that all hk < t/2. Note that
(Fy,b)

l
hk

(x) → Dl,xFb(x, y) as k → ∞ for almost every x ∈ Ω and every y ∈ Ω.
Applying the dominated convergence theorem, we have that for almost every
x ∈ Ω,

(3.40)

∣∣∣ ∫
B(x+hkel,δ(x)−t)

(Fy,b)
l
hk

(x)f(y)dy

−
∫
B(x+hkel,δ(x)−t)

Dl,xFb(x, y)f(y)dy
∣∣∣

≤
∫
B(x,δ(x)−t/2)

|(Fy,b)
l
hk

(x) −Dl,xFb(x, y)||f(y)|dy

→ 0 as k → ∞.

Note that |Dl,xFb(x, y)| ≤ ∥b∥Lip(Ω) and fhk,l → f in Lp
loc(Ω). Thus, we have

(3.41)

∣∣∣ ∫
B(x+hkel,δ(x)−t)

Dl,xFb(x, y)fhk,l(y)dy

−
∫
B(x+hkel,δ(x)−t)

Dl,xFb(x, y)f(y)dy
∣∣∣

≤ ∥b∥Lip(Ω)

∫
B(x,δ(x)−t/2)

|fh,kl
(y) − f(y)|dy → 0 as k → ∞.

We also note that limk→∞ χB(x+hkel,δ(x)−t)(y) = 1 for all y ∈ B(x, δ(x) −
t). This together with the fact that |Dl,xFb(x, y)f(y)| ≤ ∥b∥Lip(Ω)|f(y)| ∈
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L1(B(x, δ(x) − t/2)) and the dominated convergence theorem implies that

(3.42)

lim
k→∞

∫
B(x+hkel,δ(x)−t)

Dl,xFb(x, y)f(y)dy

=

∫
B(x,δ(x)−t)

Dl,xFb(x, y)f(y)dy.

Then (3.39) follows from (3.40)-(3.42). □

Applying the arguments similar to those used to derive Lemma 3.5, we can
get the following result. The details are omitted.

Lemma 3.6. Let f ∈ W 1,p(Ω) with 1 < p < ∞ and b ∈ Lip(Ω). Let {hk}k≥1 ⊂
(0,∞) be such that limk→∞ hk = 0 and l ∈ {1, 2, . . . , n}. Assume that |Ω| < ∞
and δ(x) ≥ δ(x+hkel) for almost every x ∈ Ω and all k ≥ 1. Then, for almost
every x ∈ Ω,

lim
k→∞

∫
B(x,δ(x+hkel))

Fb(x + hkel, y + hkel)fhk,l(y) − Fb(x, y)f(y)

hk
dy

=

∫
B(x,δ(x))

(Dl,yFb(x, y) + Dl,xFb(x, y))f(y)dy

+

∫
B(x,δ(x))

Fb(x, y)Dlf(y)dy.

Lemma 3.7. Let f ∈ W 1,p(Ω) for some p ∈ (1,∞) and {fj}∞j=1 ⊊ W 1,p(Ω)

such that fj → f in W 1,p(Ω) as j → ∞. Assume b ∈ Lip(Ω) and |Ω| < ∞. If
α = 0 or α ∈ [1, n/p), then for any K ⊂⊂ Ω and all l ∈ {1, 2, . . . , n}, we have

lim
j→∞

∥DlMb,α,Ωfj −DlMb,α,Ωf∥Lqα (Kj) = 0,

where

Kj := {x ∈ K : δ(x) ∈ Ib,α,fj (x) ∩ Ib,α,f (x)}

and

qα =

{
p, if α = 0;
np/(n− (α− 1)p), if α ∈ [1, n/p).

Proof. By [35, Lemma 2.11], [29, Lemmas 5.1-5.2] and the arguments similar
to those used to derive [32, Lemma 3.8], one can get the desire conclusion of
Lemma 3.7. The details are omitted. □

3.2. Proof of Theorem 1.8

Applying Lemmas 3.1-3.7, [35, Lemma 2.11], [35, Corollary 2.7] and the
arguments similar to those used to derive the proof of [32, Theorem 1.2], the
conclusion of Theorem 1.8 can be proved. The details are omitted.
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[7] E. Carneiro, C. González-Riquelme, and J. Madrid, Sunrise strategy for the continuity

of maximal operators, J. Anal. Math. 148 (2022), no. 1, 37–84. https://doi.org/10.

1007/s11854-022-0222-7

[8] E. Carneiro and J. Madrid, Derivative bounds for fractional maximal functions, Trans.

Amer. Math. Soc. 369 (2017), no. 6, 4063–4092. https://doi.org/10.1090/tran/6844

[9] E. Carneiro, J. Madrid, and L. B. Pierce, Endpoint Sobolev and BV continuity for
maximal operators, J. Funct. Anal. 273 (2017), no. 10, 3262–3294. https://doi.org/

10.1016/j.jfa.2017.08.012

[10] E. Carneiro and D. Moreira, On the regularity of maximal operators, Proc. Amer. Math.
Soc. 136 (2008), no. 12, 4395–4404. https://doi.org/10.1090/S0002-9939-08-09515-4

[11] P. Chen, X. T. Duong, J. Li, and Q. Wu, Compactness of Riesz transform commutator
on stratified Lie groups, J. Funct. Anal. 277 (2019), no. 6, 1639–1676. https://doi.

org/10.1016/j.jfa.2019.05.008

[12] F. Deringoz, V. S. Guliyev, and S. G. Hasanov, Commutators of fractional maximal
operator on generalized Orlicz-Morrey spaces, Positivity 22 (2018), no. 1, 141–158.

https://doi.org/10.1007/s11117-017-0504-y

[13] F. Deringoz, V. S. Guliyev, and S. G. Samko, Vanishing generalized Orlicz-Morrey spaces
and fractional maximal operator, Publ. Math. Debrecen 90 (2017), no. 1-2, 125–147.

[14] X. Duong, M. Lacey, J. Li, B. Wick, and Q. Wu, Commutators of Cauchy-Szego type

integrals for domains in Cn with minimal smoothness, Indiana Univ. Math. J. 70 (2021),
no. 4, 1505–1541. https://doi.org/10.1512/iumj.2021.70.8573

[15] Z. W. Fu, S. L. Gong, S. Z. Lu, and W. Yuan, Weighted multilinear Hardy operators

and commutators, Forum Math. 27 (2015), no. 5, 2825–2851. https://doi.org/10.

1515/forum-2013-0064
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