DOI QR코드

DOI QR Code

A unified consistent couple stress beam theory for functionally graded microscale beams

  • Chih-Ping Wu (Department of Civil Engineering, National Cheng Kung University) ;
  • Zhen Huang (Department of Civil Engineering, National Cheng Kung University)
  • 투고 : 2021.09.11
  • 심사 : 2024.04.03
  • 발행 : 2024.04.25

초록

Based on the consistent couple stress theory (CCST), we develop a unified formulation for analyzing the static bending and free vibration behaviors of functionally graded (FG) microscale beams (MBs). The strong forms of the CCST-based Euler-Bernoulli, Timoshenko, and Reddy beam theories, as well as the CCST-based sinusoidal, exponential, and hyperbolic shear deformation beam theories, can be obtained by assigning some specific shape functions of the shear deformations varying through the thickness direction of the FGMBs in the unified formulation. The above theories are thus included as special cases of the unified CCST. A comparative study between the results obtained using a variety of CCST-based beam theories and those obtained using their modified couple stress theory-based counterparts is carried out. The impacts of some essential factors on the deformation, stress, and natural frequency parameters of the FGMBs are examined, including the material length-scale parameter, the aspect ratio, and the material-property gradient index.

키워드

참고문헌

  1. Akgoz, B. and Civalek, O. (2012), "Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory", Mater. Des., 42, 164-171. https://doi.org/10.1016/j.matdes.2012.06.002.
  2. Amar, H., Kaci, A., Yeghnem, R. and Tounsi, A. (2018), "A new four-unknown refined theory based on modified couple stress theory for size-dependent bending and vibration analysis of functionally graded micro-plate", Steel Compos. Struct., 26(1), 89-102. https://doi.org/10.12989/scs.2018.26.1.089.
  3. Beni, Y.T. (2016), "Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams", J. Intell. Mater. Syst. Struct., 27(16), 2199-2215. https://doi.org/10.1177%2F1045389X15624798. https://doi.org/10.1177%2F1045389X15624798
  4. Ebrahimi, E., Dehghan, M. and Seyfi, A. (2019), "Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes", Adv. Nano Res., 7(1), 1-11. https://doi.org/10.12989/anr.2019.7.1.001.
  5. Ebrahimi, F., Mahmoodi, F. and Barati, M.R. (2017), "Thermomechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory", Adv. Mater. Res., 6(3), 279-301. https://dx.doi.org/10.12989/amr.2017.6.3.279.
  6. Ebrahimi, F., Seyfi, A. and Dabbagh, A. (2019a), "Dispersion of waves in FG porous nanoscale plates based on NSGT in thermal environment", Adv. Nano Res., 7(5), 325-335. https://doi.org/10.12989/anr.2019.7.5.325.
  7. Ebrahimi, F., Seyfi, A. and Dabbagh, A. (2019b), "A novel porosity-dependent homogenization procedure for wave dispersion in nonlocal strain gradient inhomogeneous nanobeams", Eur. Phys. J. Plus, 134, 226. https://doi.org/10.1140/epjp/i2019-12547-8.
  8. Ebrahimi, F., Seyfi, A., Nouraei, M. and Haghi, P. (2022), "Influence of magnetic field on the wave propagation response of functionally graded (FG) beam lying on elastic foundation in thermal environment", Waves Rand. Complex Media, 32(5), 2158-2176.
  9. Ebrahimi, E., Seyfi, A. and Teimouri, A. (2023), "Torsional vibration analysis of scale-dependent non-circular graphene oxide power-strengthed nanocomposite nanorods", Eng. Comput. 39, 173-184.
  10. Fakhrabadi, M.M.S. (2015), "Size effects on nanomechanical behaviors of nanoelectronics devices based on consistent couple-stress theory", Int. J. Mech. Sci., 92, 146-153. https://doi.org/10.1016/j.ijmecsci.2014.12.009.
  11. Fakhrabadi, M.M.S. (2016), "Prediction of small-scale effects on nonlinear dynamic behaviors of carbon nanotube-based nanoresonators using consistent couple stress theory", Compos. Part B, 88, 26-35. https://doi.org/10.1016/j.compositesb.2015.11.001.
  12. Fakhrabadi, M.M.S., Rastgoo, A. and Ahmadian, M.T. (2013), "Investigation of the mechanical behaviors of carbon nanotubes under electrostatic actuation using the modified couple stress theory", Full. Nanotubes Carbon Nanostruct., 21, 930-945. https://doi.org/10.1080/1536383X.2013.826199.
  13. Gohardani, O., Elola, M.C. and Elizetxea, C. (2014), "Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: a review of current and expected applications in aerospace sciences", Prog. Aerosp. Sci., 70, 42-68. https://doi.org/10.1016/j.paerosci.2014.05.002.
  14. Hadi, A., Nejad, M.Z., Rastgoo, A. and Hosseini, M. (2018), "Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory", Steel Compos. Struct., 26(6), 663-672. https://doi.org/10.12989/scs.2018.26.6.663.
  15. Hadjesfandiari, A.R. (2013), "Size-dependent piezoelectricity". Int. J. Solids Struct., 50(18), 2781-2791. https://doi.org/10.1016/j.ijsolstr.2013.04.020.
  16. Hadjesfandiari, A.R. (2014), "Size-dependent Thermoelasticity". Latin American J. Solids Struct., 11(9), 1679-1708. https://doi.org/10.1590/S1679-78252014000900010.
  17. Hadjesfandiari A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solids Struct., 48(18), 2496-2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002.
  18. Hadjesfandiari A.R. and Dargush, G.F. (2013), "Fundamental solutions for isotropic size-dependent couple stress elasticity", Int. J. Solids Struct., 50(9), 1253-1265. https://doi.org/10.1016/j.ijsolstr.2012.12.021.
  19. Janas D. and Koziol, K.K. (2014), "A review of production methods of carbon nanotubes and graphene thin films for electrothermal applications", Nanoscale, 6, 3037-3045. https://doi.org/10.1039/C3NR05636H.
  20. Khajueenejad F. and Ghanbari, J. (2015), "Internal length parameter and buckling analysis of carbon nanotubes using modified couple stress theory and Timoshenko beam model", Mater. Res. Express, 2(10), 105009. http://dx.doi.org/10.1088/2053-1591/2/10/105009.
  21. Koiter, W.T. (1964), "Couple stresses in the theory of elasticity, I and II", Proc. Ned. Akad. Wet. B, 67, 17-44.
  22. Kolahchi R. and Bidgoli, A.M.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37(2), 265-274. http://doi.org/10.1007/s10483-016-2030-8.
  23. Li, C., Thostenson, E.T. and Chou, T.W. (2008), "Sensors and actuators based on carbon nanotubes and their composites: a review", Compos. Sci. Technol., 68(6), 1227-1249. https://doi.org/10.1016/j.compscitech.2008.01.006.
  24. Liew, K.M., Wong, C.H., He, X.Q., Tan, M.J. and Meguid, S.A. (2004), "Nanomechanics of single and multiwalled carbon nanotubes", Phys. Rev. B, 69, 115429. https://doi.org/10.1103/PhysRevB.69.115429.
  25. Mensah, B., Kim, H.G., Lee, J.H., Arepalli, S. and Nah, C. (2015), "Carbon nanotube-reinforced elastomeric nanocomposites: a review", Int. J. Smart Nano Mater., 6(4), 211-238. https://doi.org/10.1080/19475411.2015.1121632.
  26. Miandoab, E.M., Pishkenari, H.N., Yousefi-Koma, A. and Hoorzad, H. (2014), "Polysilicon nano-beam model based on modified couple stress and Eringen's nonlocal elasticity theories", Physica E, 63, 223-228. https://doi.org/10.1016/j.physe.2014.05.025.
  27. Mindlin R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Ration. Mech. Anal., 11, 415-488. 
  28. Mori T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metall. 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3.
  29. Nejad, M.Z., Hadi, A. and Farajpour, A. (2017), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., 63(2), 161-169. https://doi.org/10.12989/sem.2017.63.2.161.
  30. Ng, K.W., Lam, W.H. and Pichiah, S., "A review on potential applications of carbon nanotubes in marine current turbines", Renew. Sustain. Energy Rev., 28, 331-339. https://doi.org/10.1016/j.rser.2013.08.018.
  31. Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FEM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239.
  32. Qu, Y., Zhang, G.Y., Fan, Y.M. and Jin, F. (2021), "A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part I-reconsideration of curvature-based flexoelectricity theory", Math. Mech. Solids, 26(11), 1-13. https://doi.org/10.1177/10812865211001533.
  33. Rahmani, O., Hosseini, S.A.H., Ghoytasi, I. and Golmohammadi, H. (2018), "Free vibration of deep curved FG nano-beam based on modified couple stress theory", Steel Compos. Struct., 26(5), 607-620. https://dx.doi.org/10.12989/scs.2018.26.5.607.
  34. Reddy, J.N. (2001), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.
  35. Reddy, J.N. (2013), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton, 2013.
  36. Seyfi, A., Teimouri, A. and Ebrahimi F. (2023), "Scale-dependent torsional vibration response of non-circular nanoscale auxetic rods", Waves Rand. Complex Media, https://doi.org/10.1080/17455030.2021.1990441.
  37. Simsek M. and Reddy, J.N. (2013a), "Bending and vibration of functionally graded micrbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002.
  38. Simsek M. and J.N. Reddy, J.N. (2013b), "A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory", Compos. Struct., 101, 47-58. https://doi.org/10.1016/j.compstruct.2013.01.017.
  39. Surana, K.S., Mysore, D. and Reddy, J.N. (2019), "Non-classical continuum theories for solid and fluent continua and some applications", Int. J. Smart Nano Mater., 10(1), 28-89. https://doi.org/10.1080/19475411.2018.1530700.
  40. Toupin, R.A. (1962), "Elastic materials with couple-stresses", Arch. Ration. Mech. Anal., 11, 385-414.
  41. Trinh, L.C., Nguyen, H.X., Vo, T.P. and Nguyen, T.K. (2016), "Size-dependent behavior of functionally graded microbeams using various shear deformation theories based on the modified couple stress theory", Compos. Struct., 154, 556-572. https://doi.org/10.1016/j.compstruct.2016.07.033.
  42. Voyiadjis, G.Z. and Song, Y. (2019), "Strain gradient continuum plasticity theories: Theoretical, numerical, and experimental investigations", Int. J. Plast., 121, 21-75. https://doi.org/10.1016/j.ijplas.2019.03.002.
  43. Wang Q. and Arash, B. (2014), "A review on applications of carbon nanotubes and nano-resonator sensors", Comput. Mater. Sci., 82, 350-360. https://doi.org/10.1016/j.commatsci.2013.10.010.
  44. Wu C.P. and Chen, Y.J. (2020), "A nonlocal continuum mechanics-based asymptotic theory for the buckling analysis of SWCNTs embedded in an elastic medium subjected to combined hydrostatic pressure and axial compression", Mech. Mater., 148, 103514. https://doi.org/10.1016/j.mechmat.2020.103514.
  45. Wu, C.P., Hong, Z.L. and Wang, Y.M. (2017), "Geometrically nonlinear static analysis of an embedded multiwalled carbon nanotube and van der Waals interaction", J. Nanomech. Micromech. ASCE, 7, 04017012. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000134.
  46. Wu, C.P. and Hu, H.X. (2021), "A review of dynamic analyses of single- and multi-layered graphene sheets/nanoplates using various nonlocal continuum mechanics-based plate theories", Acta Mech., Accepted.
  47. Wu C.P. and Yu, J.J. (2019), "A review of mechanical analyses of rectangular nanobeams and single-, double-, and multi-walled carbon nanotubes using Eringen's nonlocal elasticity theory", Arch. Appl. Mech., 89, 1761-1792. https://doi.org/10.1007/s00419-019-01542-z.
  48. Yang, F., Chong, A.C.M., Lam, D.C.C. and P. Tong (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.