DOI QR코드

DOI QR Code

Gas Injection Experiment to Investigate Gas Migration in Saturated Compacted Bentonite

포화 압축 벤토나이트 내 기체 이동 현상 관측을 위한 기체 주입 시험

  • Received : 2024.02.27
  • Accepted : 2024.03.21
  • Published : 2024.04.30

Abstract

In the disposal environment, gases can be generated at the interface between canister and buffer due to various factors such as anaerobic corrosion, radiolysis, and microbial degradation. If the gas generation rate exceeds the diffusion rate, the gas within the buffer may compress, resulting in physical damage to the buffer due to the increased pore pressure. In particular, the rapid movement of gases, known as gas breakthroughs, through the dilatancy pathway formed during this process may lead to releasing radionuclide. Therefore, understanding these gas generation and movement mechanism is essential for the safety assessment of the disposal systems. In this study, an experimental apparatus for investigating gas migration within buffer was constructed based on a literature review. Subsequently, a gas injection experiment was conducted on a compacted bentonite block made of Bentonile WRK (Clariant Ltd.) powder. The results clearly demonstrated a sharp increase in stress and pressure typically observed at the onset of gas breakthrough within the buffer. Additionally, the range of stresses induced by the swelling phenomenon of the buffer, was 4.7 to 9.1 MPa. The apparent gas entry pressure was determined to be approximately 7.8 MPa. The equipment established in this study is expected to be utilized for various experiments aimed at building a database on the initial properties of buffer and the conditions during gas injection, contributing to understanding the gas migration phenomena.

처분 환경에서는 혐기성 부식, 방사선 분해, 미생물 분해와 같은 다양한 원인으로 처분용기와 완충재의 경계면에서 기체가 발생할 수 있다. 기체의 발생 속도가 완충재 내부에서의 확산 속도보다 빠를 경우, 완충재 내부에 기체가 압축되어 공극 압력이 증가함으로써 완충재의 물리적 손상을 유발할 수 있다. 특히 이때 발생한 균열을 통해 기체돌파현상이라 불리는 급격한 기체 이동 현상과 함께 방사성 핵종이 누출될 가능성이 있다. 따라서 처분 시스템의 안전성 평가를 위해서는 이러한 기체 발생 및 이동 현상에 대한 이해가 필수적이다. 이 연구에는 완충재 내 기체 이동 현상 규명을 위한 시험 장치를 문헌 연구를 통해 구축하고, 이를 활용하여 한국형 처분 시스템의 완충재 후보 물질 중 하나인 Bentonile WRK (Clariant Ltd.) 분말로 제작한 압축 시료에 대한 기체 주입 시험을 수행하였다. 시험 결과, 완충재 내 기체돌파현상 발생 지점에서 일반적으로 관측되는 특성인 응력 및 압력의 급격한 상승 경향이 뚜렷하게 관찰되었다. 또한 완충재 팽윤으로 기인한 응력의 범위는 4.7~9.1 MPa이었으며, 기체 유입 압력으로 간주할 수 있는 기체돌파현상 발생 시의 압력은 약 7.8 MPa로 확인되었다. 구축된 장치는 향후 완충재의 초기 물성 및 기체 주입 실험 초기 조건에 대한 데이터베이스 구축을 위한 다양한 실험에 활용할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 2024년도 정부(과학기술정보통신부)의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국연구재단의 지원(2021M2E1A1085193)을 받아 수행되었습니다.

References

  1. Cuss, R.J., Harrington, J.F., Giot, R., and Auvray, C., 2014, Experimental observations of mechanical dilation at the onset of gas flow in Callovo-Oxfordian claystone, In: Norris, S., Bruno, J., (eds) Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Geological Society, London, Special Publications, 400, 507-519.
  2. Donohew, A.T,, Horseman, S.T., and Harrington, J.F., 2000, Gas entry into unconfined clay pastes at water contents between the liquid and plastic limits, pp. 369-394 in: Environmental Mineralogy-Microbial Interactions, Anthropogenic Influences, Contaminated Land and Waste Management (J.D. Cotter-Howells, L.S. Campbell, E. Valsami-Jones, M. Batchelder, editors), Mineralogical Society Special Publication, 9. Mineralogical Society of Great Britain and Ireland, London, UK.
  3. Galle, C., 1998, Migration dez gaz et pression de rupture dans une argile compactee destinee a la barriere ouvragee d'un stockage profond. Bulletin de la Societe Geologique de France, 169(5), 675-680.
  4. Graham, C.C., Harrington, J.F., and Sellin, P., 2016, Gas migration in pre-compacted bentonite under elevated pore-water pressure conditions, Applied Clay Science, 132, 353-365. https://doi.org/10.1016/j.clay.2016.06.029
  5. Graham, C.C., Harrington, J.F., Cuss, R.J., and Sellin, P., 2012, Gas migration experiments in bentonite: implications for numerical modelling, Mineralogical Magazine, 76(8), 3279-3292. https://doi.org/10.1180/minmag.2012.076.8.41
  6. Graham, C.C., Harrington, J.F., Cuss, R.J., and Sellin, P., 2014, Pore-pressure cycling experiments on Mx80 Bentonite. London: The Geological Society of London.
  7. Graham, J., Halayko, K.G., Hume, H., Kirkham, T., Gray, M., and Oscarson, D., 2002, A capilliarity-advective model for gas break-through in clays, Engineering Geology, 64, 273-286. https://doi.org/10.1016/S0013-7952(01)00106-5
  8. Harrington, J.F., 2016, Task A: Stage 1A: 1D flow through saturated bentonite under constant volume boundary conditions, British Geological Survey, Pers. comm. 05/10/2016.
  9. Harrington, J.F., Graham, C.C., Cuss, R.J., and Norris, S., 2017, Gas network development in a precompacted bentonite experiment: Evidence of generation and evolution, Applied Clay Science, 147, 80-89. https://doi.org/10.1016/j.clay.2017.07.005
  10. Harrington, J.F. and Horseman, S.T., 2003, Gas Migration in KBS-3 Buffer Bentonite: Sensitivity of Test Parameters to Experimental Boundary Conditions, SKB Technical Report No. TR-03-02. Svensk Karnbranslehantering AB, Stockholm, Sweden.
  11. Horseman, S.T., Harrington, J.F., and Sellin, P., 1996, Gas Migration in MX80 Buffer Bentonite, In: Symposium on the Scientific Basis for Nuclear Waste Management XX (Boston), Materials Research Society, 465, 1003-1010.
  12. Horseman, S.T., Harrington, J.F., and Sellin, P., 1999, Gas migration in clay barriers, Engineering Geology, 54, 139-149. https://doi.org/10.1016/S0013-7952(99)00069-1
  13. Horseman, S.T., Harrington, J.F., Sellin, P., 2004, Water and Gas Movement in Mx80 Bentonite Buffer Clay, In: Symposium on the Scientific Basis for Nuclear Waste Management XXVII (Kalmar), Materials Research Society, Vol. 807, pp. 715-720.
  14. Kang, S., Kim, J.T., Lee, C., and Kim, J.S., 2021, Introduction to Researches on the Characteristics of Gas Migration Behavior in Bentonite Buffer, Tunnel and Underground Space, 31(5), 333-359. https://doi.org/10.7474/TUS.2021.31.5.333
  15. Kim, J.S., Choi, Y.C., Lee, M., Lee, C., Yoon, S., Cho, W.J., and Kim, G.Y., 2019, Design of In-DEBS (In-situ Demonstration of Engineered Barrier System) and Analysis on Optimized Manufacturing Condition for EBS, Korean Radioactive Waste Society, 17, 25-44. https://doi.org/10.7733/jnfcwt.2019.17.S.25
  16. Lee, J.O., Lim, J.G., Kang, I.M., and Kwon, S., 2012, Swelling pressures of compacted Ca-bentonite, Engineering Geology, 129, 20-26. https://doi.org/10.1016/j.enggeo.2012.01.005
  17. Lee, J., Kim, I., Ju, H., Choi, H., and Cho, D., 2020, Proposal of an Improved Concept Design for the Deep Geological Disposal System of Spent Nuclear Fuel in Korea, Journal of Nuclear Fuel Cycle and Waste Technology, 18(S), 1-19. https://doi.org/10.7733/jnfcwt.2020.18.S.1
  18. Marschall, P., Horseman, S.T., and Gimmi, T., 2005, Characterisation of gas transport properties of the opalinus clay, a potential host rock formation for radioactive waste disposal, Oil and Gas Science and Technology - Rev. IFP, 60, 121-139. https://doi.org/10.2516/ogst:2005008
  19. Pusch, R. and Forsberg, T., 1983, Gas Migration through Bentonite Clay, SKB Technical Report 83-71, Svensk Karnbranslehantering AB, Stockholm, Sweden.
  20. Pusch, R., Ranhagen, L., and Nilsson, K., 1985, Gas Migration through MX-80 Bentonite, Nagra Technical Report NTB 85-36, Nagra, Wettingen, Switzerland.
  21. Sellin, P. and Leupin, O.X., 2013, The use of clay as an engineered barrier in radioactive-waste management-a review, Clays and Clay Minerals, 61(6), 477-498. https://doi.org/10.1346/CCMN.2013.0610601
  22. Tamayo-Mas et al., 2020, "Decovalex-2019 (Task A Final Report)" (No. LBNL-2001262), Lawrence Berkeley National Lab. (LBNL), Berceley, CA (United States).
  23. Tanai, K., Kanno, T., Galle, C., 1996, Experimental study of gas permeabilities and breakthrough pressures in clays, MRS Symposia Proceedings, 465, pp. 1003-1010.
  24. Villar, M.V. and Lloret, A.J.A.C.S., 2004, Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite, Applied Clay Science, 26(1-4), 337-350. https://doi.org/10.1016/j.clay.2003.12.026
  25. Villar, M.V., 2004, Thermo-Hydro Mechanical Characteristics and Processes in the Clay Barrier of a High Level Radioactive Waste Repository, State of the Art Report.
  26. Villar, M.V., Martin, P.L., Rom ero, F.J., Barcala, J.M., Gutierrez-Rodrigo, V., Skoczylas, F., ... and Burlion, N., 2012, Gas transport through bentonite: influence of dry density, water content and boundary conditions, Propietes de Transfert des Geomateriaux. Transfert, pp. 379-389.
  27. Volckaert, G., Ortiz, L., De Canniere, P., Put, M., Horseman, S.T., Harrington, J.F., Fioravante, V., and Impey, M., 1995, MEGAS - Modelling and Experiments on Gas Migration in Repository Host Rocks: Final Report Phase 1, European Commission Report EUR 16235 EN.
  28. Ye, W.M., Zheng, Z.J., Chen, B., Chen, Y.G., Cui, Y.J., and Wang, J., 2014, Effects of pH and temperature on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite, Applied Clay Science, 101, 192-198. https://doi.org/10.1016/j.clay.2014.08.002