DOI QR코드

DOI QR Code

Localized Corrosion Resistance and Microstructural Changes in UNS N07718 Alloy After Solution Heat Treatment

  • Yoon-Hwa Lee (School of Materials Science and Engineering, Changwon National University) ;
  • Jun-Seob Lee (School of Materials Science and Engineering, Changwon National University) ;
  • Soon il Kwon (R&D Center, SeAH CSS corporation) ;
  • Jungho Shin (R&D Center, SeAH CSS corporation) ;
  • Je-Hyun Lee (School of Materials Science and Engineering, Changwon National University)
  • Received : 2024.02.21
  • Accepted : 2024.03.20
  • Published : 2024.04.30

Abstract

The localized corrosion resistance of UNS N07718 alloy was investigated after solution heat treatment. When the alloy was heat-treated at 1050 ℃ for 2.5 hours, it experienced an increase in average grain diameter, a reduction in grain boundary area, and the dissolution of delta phases along grain boundaries. Additionally, primary metallic nitrides (MN) and metallic carbides (MC), enriched with either Ti or Nb, were identified and exhibited a random distribution within the microstructures. Despite the solution heat treatment, the composition, diameter, and abundance of MNs and MCs remained relatively consistent. The critical pitting temperature (CPT), as determined by the ASTM G48-C immersion test, revealed similar values of 45 ℃ for both treated and untreated alloys. However, a decrease in maximum pit depth and corrosion rate was observed after the solution heat treatment. The microstructural changes that occurred during the heat treatment and their potential implications were discussed to understand the influence of the solution heat treatment.

Keywords

Acknowledgement

This work was supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20214000000480, Development of R&D engineers for combined cycle power plant technologies).

References

  1. C. M. Kuo, Y. T. Yang, H. Y. Bor, C. N. Wei, and C. C. Tai, Aging effects on the microstructure and creep behavior of Inconel 718 superalloy, Materials Science and Engineering: A, 510, 289 (2009). Doi: https://doi.org/10.1016/j.msea.2008.04.097 
  2. E. Ott, X. Liu, J. Andersson, Z. Bi, K. Bockenstedt, I. Dempster, and C. Sudbrack, Ott, Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications, Springer (2018). 
  3. T. Trosch, J. Strossner, R. Volkl, and U. Glatzel, Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting, Materials letters, 164, 428 (2016). Doi: https://doi.org/10.1016/j.matlet.2015.10.136 
  4. H. S. Klapper, and J. Stevens, Susceptibility to pitting corrosion of nickel-based Alloy 718 exposed to simulated drilling environments, Corrosion 70, 899 (2014). Doi: https://doi.org/10.5006/1154 
  5. U. Martin, J. Ress, J. Bosch, and D. M. Bastidas, Evaluation of the DOS by DL- EPR of UNSM Processed Inconel 718, Metals, 10, 204 (2020). Doi: https://doi.org/10.3390/met10020204 
  6. F. Andreatta, I. Apachitei, A. A. Kodentsov, J. Dzwonczyk, and J. Duszczyk, Volta potential of second phase particles in extruded AZ80 magnesium alloy, Electrochimica Acta, 51, 3551 (2006). Doi: https://doi.org/10.1016/j.electacta.2005.10.010 
  7. S. Rahman, G. Priyadarshan, K. S. Raja, C. Nesbitt, and M. Misra, Investigation of the secondary phases of alloy 617 by scanning kelvin probe force microscope, Materials Letters, 62, 2263 (2008). Doi: https://doi.org/10.1016/j.matlet.2007.11.077 
  8. J.-S. Lee, Y.-J. Lee, S. I. Kwon, J. Shin, and J.-H. Lee, Localized Corrosion Behavior of Inconel 718 in a Chloride-Containing Aqueous Solution, Corrosion Science and Technology, 20, 361 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.361 
  9. J.-S. Lee, Y.-J. Lee, S. I. Kwon, J. Shin, Y. T. Cho, S. Kim, and J.-H. Lee, Localized Corrosion Behavior of UNS N07718 in a Solution Simulating a Diluted-sour Environment, Korean Journal of Metals and Materials, 61, 553 (2023). Doi: http://dx.doi.org/10.3365/KJMM.2023.61.8.553 
  10. G. A. Rao, M. Kumar, M. Srinivas, and D. S. Sarma, Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718, Materials Science and Engineering: A, 355, 114 (2003). Doi: https://doi.org/10.1016/S0921-5093(03)00079-0 
  11. X. L.An, L. Zhou, B. Zhang, C. L. Chu, L. Y.Han, and P. K. Chu, Inconel 718 treated with two-stage solution and aging processes: microstructure evolution and enhanced properties, Materials Research Express, 6, 075803 (2019). Doi: https://doi.org/10.1088/2053-1591/ab1290 
  12. W. M. Tucho, P. Cuvillier, A. Sjolyst-Kverneland, and V. Hansen, Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment, Materials Science and Engineering: A, 689, 220 (2017). Doi: https://doi.org/10.1016/j.msea.2017.02.062 
  13. J. Rosenberg, J. Klower, J. Groth, C. Bosch, and G. Genchev, Proc. NACE CORROSION Conf., Paper No. NACE 10650 (2018). 
  14. R. Rebak, M. Rincon-Ortiz, M. Iannuzzi, M. Kappes, A. Mishra, and M. Rodriguez, Effect of thermal treatment on the localized corrosion behavior of alloy 718 (UNS N07718), European Federation of Corrosion, (2014). Doi: http://hdl.handle.net/20.500.11937/75302 
  15. L. C. M. Valle, A. I. C. Santana, M. C. Rezende, J. Dille, O. R. Mattos, and L. H. de Almeida, The influence of heat treatments on the corrosion behaviour of nickel-based alloy 718, Journal of Alloys and Compounds, 809, 151781 (2019). Doi: https://doi.org/10.1016/j.jallcom.2019.151781 
  16. ASTM E112-96, Standard test methods for determining average grain size, ASTM International, West Conshohocken, PA, USA (2004). 
  17. ASTM G48-03, Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution, ASTM International (2009). 
  18. F. da Cruz Gallo, L. M. B. de Azevedo, C. Labre, L. S. Araujo, J. Dille, and L. H. de Almeida, Correlation between grain boundary character distribution and δ-phase precipitation in nickel-based superalloy 718, Journal of Materials Research and Technology, 9, 1801 (2020). Doi: https://doi.org/10.1016/j.jmrt.2019.12.011 
  19. A. R. Figueiredo, L. M. B. de Azevedo, F. da Cruz Gallo, M. A. R. Medeiros, L. H. de Almeida, L. S. Araujo, and A. da Cunha Rocha, Effect of annealing twins, strain-recrystallization processing and δ-phase fraction on microtexture and evaluation of mechanical properties of nickel-based superalloy 718, Materials Science and Engineering: A, 145341 (2023). Doi: https://doi.org/10.1016/j.msea.2023.145341 
  20. V. Beaubois, J. Huez, S. Coste, O. Brucelle, and J. Lacaze, Short term precipitation kinetics of delta phase in strain free Inconel* 718 alloy, Materials Science and Technology, 20, 1019 (2004). Doi: https://doi.org/10.1179/026708304225019830 
  21. L. C. M. Valle, L. S. Araujo, S. B. Gabriel, J. Dille, and L. H De Almeida, The effect of δ phase on the mechanical properties of an Inconel 718 superalloy, Journal of materials engineering and performance, 22, 1512 (2013). Doi: https://link.springer.com/article/10.1007/s11665-012-0433-7 
  22. K. Wilkinson, J. Lundkvist, G. Seisenbaeva, and V. Kessler, New tabletop SEM-EDS-based approach for cost-efficient monitoring of airborne particulate matter, Environmental pollution, 159, 311 (2011). Doi: https://doi.org/10.1016/j.envpol.2010.08.024 
  23. G. K. Dosbaeva, S. C. Veldhuis, A. Elfizy, G. Fox-Rabinovich, and T. Wagg, Microscopic observations on the origin of defects during machining of direct aged (DA) Inconel 718 superalloy, Journal of Materials Engineering and Performance, 19, 1193 (2010). Doi: https://link.springer.com/article/10.1007/s11665-009-9587-3 
  24. T. Zaman, M. Farooque, S. A. Rizvi, I. Salam, and M. Waseem, Investigation of low stress rupture properties in Inconel-718 super alloy, IOP Conference Series: Materials Science and Engineering, 146, 012051 (2016). Doi: https://doi.org/10.1088/1757-899X/146/1/012051 
  25. P. Hoier, A. Malakizadi, P. Stuppa, S. Cedergren, and U. Klement, Microstructural characteristics of Alloy 718 and Waspaloy and their influence on flank wear during turning, Wear, 400, 184 (2018). Doi: https://doi.org/10.1016/j.wear.2018.01.011 
  26. ASTM G31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM, PA, USA (2004). https://www.astm.org/g0031-72r04.html 
  27. B. W. Bennett, and H. W. Pickering, Effect of grain boundary structure on sensitization and corrosion of stainless steel, Metallurgical and Materials Transactions A, 18, 1117 (1987). Doi: https://link.springer.com/article/10.1007/BF02668561 
  28. G. S. Frankel, and N. Sridhar, Understanding localized corrosion, Materials today, 11, 38 (2008). Doi: https://doi.org/10.1016/S1369-7021(08)70206-2 
  29. P. Marcus, V. Maurice, and H. H. Strehblow, Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure, Corrosion science, 50, 2698 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.06.047 
  30. J. R. Groh, R. W. Duvelius, and L. A, Influence of corrosion pitting on alloy 718 fatigue capability, Superalloy 718, 583 (2001). Doi: https://www.tms.org/superalloys/10.7449/2001/superalloys_2001_583_592.pdf 
  31. S. Azadian, L. Y. Wei, and R. Warren, Delta phase precipitation in Inconel 718, Materials characterization, 53, 7 (2004). Doi: https://doi.org/10.1016/j.matchar.2004.07.004 
  32. S. G. Huang, K. Vanmeensel, H. Mohrbacher, M. Woydt, and J. Vleugels, Microstructure and mechanical properties of NbC-matrix hardmetals with secondary carbide addition and different metal binders, International Journal of Refractory Metals and Hard Materials, 48, 418 (2015). Doi: https://doi.org/10.1016/j.ijrmhm.2014.10.014 
  33. D. S. Stone, K. B. Yoder, and W. D. Sproul, Hardness and elastic modulus of TiN based on continuous indentation technique and new correlation, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 9, 2543 (1991). Doi: https://doi.org/10.1116/1.577270 
  34. J. Cui, L. Guo, H. Lu, and D. Y. Li, Understanding effects of Cr content on the slurry erosion behavior of high-Cr cast irons through local property mapping and computational analysis, Wear, 376, 587 (2017). Doi: https://doi.org/10.1016/j.wear.2016.12.031 
  35. S. A. Vitale, J. Kedzierski, P. Healey, P. W. Wyatt, and C. L. Keast, Work-function-tuned TiN metal gate FDSOI transistors for subthreshold operation, IEEE Transactions on Electron Devices, 58, 419 (2010). Doi: https://doi.org/10.1109/TED.2010.2092779 
  36. R. Fujii, Y. Gotoh, M. Y. Liao, H. Tsuji, and J. Ishikawa, Work function measurement of transition metal nitride and carbide thin films, Vacuum, 80, 832 (2006). Doi: https://doi.org/10.1016/j.vacuum.2005.11.030 
  37. M. Yoshitake, Y. Aparna, and K. Yoshihara, Tailoring of work function by surface segregation, Applied surface science, 169, 666 (2001). Doi: https://doi.org/10.1016/S0169-4332(00)00809-6 
  38. A. Tajyar, N. Brooks, N. Holtham, R. Rowe, D. J. Newell, A. N. Palazotto, and K. Davami, Effects of a modified heat-treatment on microstructure and mechanical properties of additively manufactured Inconel 718, Materials Science and Engineering: A, 838, 142770 (2022). Doi: https://doi.org/10.1016/j.msea.2022.142770