Acknowledgement
This work was supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20214000000480, Development of R&D engineers for combined cycle power plant technologies).
References
- C. M. Kuo, Y. T. Yang, H. Y. Bor, C. N. Wei, and C. C. Tai, Aging effects on the microstructure and creep behavior of Inconel 718 superalloy, Materials Science and Engineering: A, 510, 289 (2009). Doi: https://doi.org/10.1016/j.msea.2008.04.097
- E. Ott, X. Liu, J. Andersson, Z. Bi, K. Bockenstedt, I. Dempster, and C. Sudbrack, Ott, Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications, Springer (2018).
- T. Trosch, J. Strossner, R. Volkl, and U. Glatzel, Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting, Materials letters, 164, 428 (2016). Doi: https://doi.org/10.1016/j.matlet.2015.10.136
- H. S. Klapper, and J. Stevens, Susceptibility to pitting corrosion of nickel-based Alloy 718 exposed to simulated drilling environments, Corrosion 70, 899 (2014). Doi: https://doi.org/10.5006/1154
- U. Martin, J. Ress, J. Bosch, and D. M. Bastidas, Evaluation of the DOS by DL- EPR of UNSM Processed Inconel 718, Metals, 10, 204 (2020). Doi: https://doi.org/10.3390/met10020204
- F. Andreatta, I. Apachitei, A. A. Kodentsov, J. Dzwonczyk, and J. Duszczyk, Volta potential of second phase particles in extruded AZ80 magnesium alloy, Electrochimica Acta, 51, 3551 (2006). Doi: https://doi.org/10.1016/j.electacta.2005.10.010
- S. Rahman, G. Priyadarshan, K. S. Raja, C. Nesbitt, and M. Misra, Investigation of the secondary phases of alloy 617 by scanning kelvin probe force microscope, Materials Letters, 62, 2263 (2008). Doi: https://doi.org/10.1016/j.matlet.2007.11.077
- J.-S. Lee, Y.-J. Lee, S. I. Kwon, J. Shin, and J.-H. Lee, Localized Corrosion Behavior of Inconel 718 in a Chloride-Containing Aqueous Solution, Corrosion Science and Technology, 20, 361 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.361
- J.-S. Lee, Y.-J. Lee, S. I. Kwon, J. Shin, Y. T. Cho, S. Kim, and J.-H. Lee, Localized Corrosion Behavior of UNS N07718 in a Solution Simulating a Diluted-sour Environment, Korean Journal of Metals and Materials, 61, 553 (2023). Doi: http://dx.doi.org/10.3365/KJMM.2023.61.8.553
- G. A. Rao, M. Kumar, M. Srinivas, and D. S. Sarma, Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718, Materials Science and Engineering: A, 355, 114 (2003). Doi: https://doi.org/10.1016/S0921-5093(03)00079-0
- X. L.An, L. Zhou, B. Zhang, C. L. Chu, L. Y.Han, and P. K. Chu, Inconel 718 treated with two-stage solution and aging processes: microstructure evolution and enhanced properties, Materials Research Express, 6, 075803 (2019). Doi: https://doi.org/10.1088/2053-1591/ab1290
- W. M. Tucho, P. Cuvillier, A. Sjolyst-Kverneland, and V. Hansen, Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment, Materials Science and Engineering: A, 689, 220 (2017). Doi: https://doi.org/10.1016/j.msea.2017.02.062
- J. Rosenberg, J. Klower, J. Groth, C. Bosch, and G. Genchev, Proc. NACE CORROSION Conf., Paper No. NACE 10650 (2018).
- R. Rebak, M. Rincon-Ortiz, M. Iannuzzi, M. Kappes, A. Mishra, and M. Rodriguez, Effect of thermal treatment on the localized corrosion behavior of alloy 718 (UNS N07718), European Federation of Corrosion, (2014). Doi: http://hdl.handle.net/20.500.11937/75302
- L. C. M. Valle, A. I. C. Santana, M. C. Rezende, J. Dille, O. R. Mattos, and L. H. de Almeida, The influence of heat treatments on the corrosion behaviour of nickel-based alloy 718, Journal of Alloys and Compounds, 809, 151781 (2019). Doi: https://doi.org/10.1016/j.jallcom.2019.151781
- ASTM E112-96, Standard test methods for determining average grain size, ASTM International, West Conshohocken, PA, USA (2004).
- ASTM G48-03, Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution, ASTM International (2009).
- F. da Cruz Gallo, L. M. B. de Azevedo, C. Labre, L. S. Araujo, J. Dille, and L. H. de Almeida, Correlation between grain boundary character distribution and δ-phase precipitation in nickel-based superalloy 718, Journal of Materials Research and Technology, 9, 1801 (2020). Doi: https://doi.org/10.1016/j.jmrt.2019.12.011
- A. R. Figueiredo, L. M. B. de Azevedo, F. da Cruz Gallo, M. A. R. Medeiros, L. H. de Almeida, L. S. Araujo, and A. da Cunha Rocha, Effect of annealing twins, strain-recrystallization processing and δ-phase fraction on microtexture and evaluation of mechanical properties of nickel-based superalloy 718, Materials Science and Engineering: A, 145341 (2023). Doi: https://doi.org/10.1016/j.msea.2023.145341
- V. Beaubois, J. Huez, S. Coste, O. Brucelle, and J. Lacaze, Short term precipitation kinetics of delta phase in strain free Inconel* 718 alloy, Materials Science and Technology, 20, 1019 (2004). Doi: https://doi.org/10.1179/026708304225019830
- L. C. M. Valle, L. S. Araujo, S. B. Gabriel, J. Dille, and L. H De Almeida, The effect of δ phase on the mechanical properties of an Inconel 718 superalloy, Journal of materials engineering and performance, 22, 1512 (2013). Doi: https://link.springer.com/article/10.1007/s11665-012-0433-7
- K. Wilkinson, J. Lundkvist, G. Seisenbaeva, and V. Kessler, New tabletop SEM-EDS-based approach for cost-efficient monitoring of airborne particulate matter, Environmental pollution, 159, 311 (2011). Doi: https://doi.org/10.1016/j.envpol.2010.08.024
- G. K. Dosbaeva, S. C. Veldhuis, A. Elfizy, G. Fox-Rabinovich, and T. Wagg, Microscopic observations on the origin of defects during machining of direct aged (DA) Inconel 718 superalloy, Journal of Materials Engineering and Performance, 19, 1193 (2010). Doi: https://link.springer.com/article/10.1007/s11665-009-9587-3
- T. Zaman, M. Farooque, S. A. Rizvi, I. Salam, and M. Waseem, Investigation of low stress rupture properties in Inconel-718 super alloy, IOP Conference Series: Materials Science and Engineering, 146, 012051 (2016). Doi: https://doi.org/10.1088/1757-899X/146/1/012051
- P. Hoier, A. Malakizadi, P. Stuppa, S. Cedergren, and U. Klement, Microstructural characteristics of Alloy 718 and Waspaloy and their influence on flank wear during turning, Wear, 400, 184 (2018). Doi: https://doi.org/10.1016/j.wear.2018.01.011
- ASTM G31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM, PA, USA (2004). https://www.astm.org/g0031-72r04.html
- B. W. Bennett, and H. W. Pickering, Effect of grain boundary structure on sensitization and corrosion of stainless steel, Metallurgical and Materials Transactions A, 18, 1117 (1987). Doi: https://link.springer.com/article/10.1007/BF02668561
- G. S. Frankel, and N. Sridhar, Understanding localized corrosion, Materials today, 11, 38 (2008). Doi: https://doi.org/10.1016/S1369-7021(08)70206-2
- P. Marcus, V. Maurice, and H. H. Strehblow, Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure, Corrosion science, 50, 2698 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.06.047
- J. R. Groh, R. W. Duvelius, and L. A, Influence of corrosion pitting on alloy 718 fatigue capability, Superalloy 718, 583 (2001). Doi: https://www.tms.org/superalloys/10.7449/2001/superalloys_2001_583_592.pdf
- S. Azadian, L. Y. Wei, and R. Warren, Delta phase precipitation in Inconel 718, Materials characterization, 53, 7 (2004). Doi: https://doi.org/10.1016/j.matchar.2004.07.004
- S. G. Huang, K. Vanmeensel, H. Mohrbacher, M. Woydt, and J. Vleugels, Microstructure and mechanical properties of NbC-matrix hardmetals with secondary carbide addition and different metal binders, International Journal of Refractory Metals and Hard Materials, 48, 418 (2015). Doi: https://doi.org/10.1016/j.ijrmhm.2014.10.014
- D. S. Stone, K. B. Yoder, and W. D. Sproul, Hardness and elastic modulus of TiN based on continuous indentation technique and new correlation, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 9, 2543 (1991). Doi: https://doi.org/10.1116/1.577270
- J. Cui, L. Guo, H. Lu, and D. Y. Li, Understanding effects of Cr content on the slurry erosion behavior of high-Cr cast irons through local property mapping and computational analysis, Wear, 376, 587 (2017). Doi: https://doi.org/10.1016/j.wear.2016.12.031
- S. A. Vitale, J. Kedzierski, P. Healey, P. W. Wyatt, and C. L. Keast, Work-function-tuned TiN metal gate FDSOI transistors for subthreshold operation, IEEE Transactions on Electron Devices, 58, 419 (2010). Doi: https://doi.org/10.1109/TED.2010.2092779
- R. Fujii, Y. Gotoh, M. Y. Liao, H. Tsuji, and J. Ishikawa, Work function measurement of transition metal nitride and carbide thin films, Vacuum, 80, 832 (2006). Doi: https://doi.org/10.1016/j.vacuum.2005.11.030
- M. Yoshitake, Y. Aparna, and K. Yoshihara, Tailoring of work function by surface segregation, Applied surface science, 169, 666 (2001). Doi: https://doi.org/10.1016/S0169-4332(00)00809-6
- A. Tajyar, N. Brooks, N. Holtham, R. Rowe, D. J. Newell, A. N. Palazotto, and K. Davami, Effects of a modified heat-treatment on microstructure and mechanical properties of additively manufactured Inconel 718, Materials Science and Engineering: A, 838, 142770 (2022). Doi: https://doi.org/10.1016/j.msea.2022.142770