DOI QR코드

DOI QR Code

Corrosion Characteristics of Corrosion-Resistant Metal with Different Composition Ratios of Acetic Acid and Acetonitrile at High Temperature and Pressure

고온 및 고압조건에서 아세트산과 아세토나이트릴의 성분비에 따른 부식저항성 금속의 부식특성

  • Hyun-Kyu Hwang (Department of marine engineering, Graduate school, Mokpo national maritime university) ;
  • Dong-Ho Shin (Department of marine engineering, Graduate school, Mokpo national maritime university) ;
  • Seung-Jun Lee (Department of marine engineering, Kunsan national university) ;
  • Seong-Jong Kim (Division of marine system engineering, Mokpo national maritime university)
  • 황현규 (국립목포해양대학교 대학원, 기관시스템공학과) ;
  • 신동호 (국립목포해양대학교 대학원, 기관시스템공학과) ;
  • 이승준 (군산대학교 ONSE대학 기관공학전공) ;
  • 김성종 (국립목포해양대학교 기관시스템공학)
  • Received : 2024.01.12
  • Accepted : 2024.02.07
  • Published : 2024.04.30

Abstract

Acetic acid and acetonitrile produced in the chemical process of petrochemical plants are used at high temperatures and pressures. They are exposed to harsh corrosive environments. The present investigation aimed to evaluate corrosion characteristics of metals with excellent corrosion resistance by performing immersion and electrochemical experiments with different composition ratios of acetic acid and acetonitrile in a high-temperature and high-pressure environment. Results of immersion experiment revealed that as acetic acid concentration increased, surface damage and corrosion also increased. In immersion experiments under all conditions, super austenitic stainless steel (UNS N08367) had the best corrosion resistance among various metals. The maximum damage depth under the most severe immersion conditions was observed to be 4.19 ㎛, which was approximately 25.25 ㎛ smaller than that of highly damaged stainless steel (UNS S31804). As a result of electrochemical experiments, electrochemical characteristics of various metals presented some differences with different composition ratios of acetic acid and acetonitrile. However, super austenitic stainless steel (UNS N08367) had the best corrosion resistance at a high pressure condition with a high concentration of acetic acid.

Keywords

Acknowledgement

이 논문은 (주)금호석유화학의 연구비 지원으로 수행된 연구임.

References

  1. M. J. Choi, E. B. Jo, D. J. Kim, Corrosion Behavior of Super Duplex Stainless Steel (STS 329J4L) Tubes and Fin-Tubes Used in Thermal Power Plant Applications, Corrosion Science and Technology, 22, 457 (2023). Doi: https://doi.org/10.14773/CST.2023.22.6.457
  2. B. Zhang, S. I Hao, J. Wu, X. Li, C. Li, X. Di, Y. Huang, Direct evidence of passive film growth on 316 stainless steel in alkaline solution, Materials Characterization, 131, 168 (2017). Doi: https://doi.org/10.1016/j.matchar.2017.05.013
  3. F. A. P. Fernandes, S. C. Heck, R. G. Pereira, C. A. Picon, P. A. P. Nascente, and L. C. Casteletti, Ion nitriding of a superaustenitic stainless steel: Wear and corrosion characterization, Surface and Coatings Technology, 204, 3087 (2020). Doi: https://doi.org/10.1016/j.surfcoat.2010.02.064
  4. C. O. A. Olsson and D. Landolt, Passive films on stainless steels-chemistry, structure and growth, Electrochimica Acta, 48, 1093 (2003). Doi: https://doi.org/10.1016/S0013-4686(02)00841-1
  5. A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, R. Arrabal, and E. Matykina, Pitting corrosion behavior of austenitic stainless steels - combining effects of Mn and Mo additions, Corrosion Science, 50, 1796 (2008). Doi: http://doi.org/10.1016/j.corsci.2008.04.005
  6. NORSOK M-630, Material Data Sheets for Piping, 5th ed.,; Standards Norway: Oslo, Norway (2010).
  7. A. Groysman, Corrosion problems and solutions in oil, gas, refining and petrochemical industry, KOM-Corrosion and Material Protection Journal, 61, 100 (2017). Doi: https://doi.org/10.1515/kom-2017-0013
  8. A. J. Invernizzi, E. Sivieri, S. P. Trasatti, Corrosion behaviour of Duplex stainless steels in organic acid aqueous solutions, Materials Science and Engineering: A, 485, 234 (2008). Doi: https://doi.org/10.1016/j.msea.2007.08.036
  9. Thu Tran, Bruce Brown, Srdjan Nesic, Bernard Tribollet, Investigation of the Electrochemical Mechanisms for Acetic Acid Corrosion of Mild Steel, CORROSION, 70, 223 (2014). Doi: https://doi.org/10.5006/0933
  10. Alan Turnbull, Mary Ryan, Anthony Willetts, Shengqi Zhou, Corrosion and electrochemical behaviour of 316L stainless steel in acetic acid solutions, Corrosion Science, 45, 1051 (2003). Doi: https://doi.org/10.1016/S0010-938X(02)00149-X
  11. J. S. Park, Y. H. Kim, S. G. Hong, Sung Jin Kim, Corrosion Behavior of Super Duplex Stainless Steel (STS 329J4L) Tubes and Fin-Tubes Used in Thermal Power Plant Applications, Corrosion Science and Technology, 22, 435 (2023). Doi: https://doi.org/10.14773/cst.2023.22.6.435
  12. R.B. Rebak, 7-Stress corrosion cracking (SCC) of nickel-based alloys, Stress Corrosion Cracking, 273 (2011). Doi: https://doi.org/10.1533/9780857093769.3.273
  13. Jorg Abel, Sannakaisa Virtanen, Corrosion of martensitic stainless steel in ethanol-containing gasoline: Influence of contamination by chloride, H2O and acetic acid, Corrosion Science, 98, 318-326 (2015). Doi: https://doi.org/10.1016/j.corsci.2015.05.027
  14. D. Hwangbo, Y. R. Yoo, S. H. Choi, S. J. Choi, Y. S. Kim, Effect of Cu Addition on the Properties of Duplex Stainless Steels, Corrosion Science and Technology, 21, 273 (2022). Doi: https://doi.org/10.14773/cst.2022.21.4.273
  15. E. Symniotis, Galvanic effects on the active dissolution of duplex stainless steels, Corrosion, 46, 2 (1990). Doi: https://doi.org/10.5006/1.3585062
  16. J. Adamiec, High temperature corrosion of power boiler components cladded with nickel alloys, Materials Characterization, 60, 1093 (2009). Doi: https://doi.org/10.1016/j.matchar.2009.03.017
  17. G. A. Zhang, Y.F. Cheng, Corrosion of X65 steel in CO2- saturated oilfield formation water in the absence and presence of acetic acid, Corrosion Science, 51, 1589 (2009). Doi: https://doi.org/10.1016/j.corsci.2009.04.004
  18. Anusuya Talukdar, Prasanna Venkatesh Rajaraman, Effect of acetic acid in CO2-H2S corrosion of carbon steel at elevated temperature, Materials Today: Proceedings, 57, 1842-1845 (2022). Doi: https://doi.org/10.1016/j.matpr.2022.01.036
  19. H. K. Hwang, D. H. Shin, S. J. Kim, Hydrogen Embrittlement Characteristics by Slow Strain Rate Test of Aluminum Alloy for Hydrogen Valve of Hydrogen Fuel Cell Vehicle, Corrosion Science and Technology, 21, 503 (2022). Doi: https://doi.org/10.14773/cst.2022.21.6.503
  20. L. G. Longsworth, Temperature Dependence of Diffusion in Aqueous Solutions, The Journal of Physical Chemistry, 58, 770 (1954). Doi: https://doi.org/10.1021/j150519a017
  21. J. S. Noh, N. J. Laycock, W. Gao, and D.B. Wells, Effects of nitric acid passivation on the pitting resistance of 316 stainless steel, Corrosion Science, 42, 2069 (2000). Doi: https://doi.org/10.1016/S0010-938X(00)00052-4
  22. R. T. Loto and C. A. Loto, Potentiodynamic Polarization Behavior and Pitting Corrosion Analysis of 2101 Duplex and 301 Austenitic Stainless Steel in Sulfuric Acid Concentrations, Journal of Failure Analysis and Prevention, 17, 672 (2017). Doi: https://doi.org/10.1007/s11668-017-0291-6