DOI QR코드

DOI QR Code

Methodology to Measure Stress Within Sand Ground Using Force Sensing Resistors

박막형 압전 센서를 활용한 사질토 지반 지중 응력 측정 방법론

  • Kim, Dong Kyun (Dept. of Civil and Environmental Engrg., Incheon National Univ.) ;
  • Woo, Sang Inn (Dept. of Civil and Environmental Engrg., Incheon National Univ.)
  • 김동균 (인천대학교 건설환경공학과) ;
  • 우상인 (인천대학교 건설환경공학과)
  • Received : 2024.04.13
  • Accepted : 2024.04.15
  • Published : 2024.04.30

Abstract

Stress is an invisible physical quantity, necessitating the use of earth pressure cells for its measurement within theground. Traditional strain-gauge type earth pressure cells, due to their rigidity, can distribute stress within the ground and subsequently affect the accuracy of earth pressure measurements. In contrast, force sensing resistors are thin and flexible, enabling the minimization of stress disturbance when measuring stress within the ground. This study developed a system that utilizes force sensing resistors to measure ground stress. It involved constructing a soil chamber for calibrating the force sensing resistors, assessing the variability of measurements from resistors embedded in sand ground, and verifying the attachment of pucks to the sensing area of the resistors.

응력은 비가시 물리량이므로, 지반 내부에서 이를 측정하기 위해서는 토압계가 필요하다. 기존의 스트레인 게이지 기반 토압계는 큰 강성을 가지며, 이는 지반 내부 응력을 교란시켜 토압 측정의 정확성에 영향을 준다. 박막형 압전센서는 얇고 유연하므로, 이를 활용할 경우 지반 내부 응력의 교란을 최소화하여 지중응력을 측정할 수 있다. 본 연구에서는 박막형 압전 센서를 활용하여 지반 내부의 응력을 측정하기 위한 시스템을 구축하였다. 박막형 압전 센서를 교정하기 위한 챔버를 제작하여 사질토 지반 내부에 매설된 박막형 압전 센서의 측정 변동성과 센서의 감지 영역에 부착된 퍽으로 인한 측정 토압의 재현성 향상을 반복실험을 통해 확인하였다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행되었습니다(No. 2022R1F1A1074378).

References

  1. Al-Khafaji, K. R., Fattah, M. Y., and Al-Recaby, M. K. (2022), "Measurement of the Lateral Earth Pressure Coefficient of Clayey Soils by Modified Oedometer Test", Engineering and Technology Journal, Vol.40, No.11, pp.1376-1384.
  2. ASTM D4254 (2006), "Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density", Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, USA.
  3. Ishihara, K. (1993), "Liquefaction and Flow Failure during Earthquakes", Geotechnique, Vol.43, No.3, pp.351-451. https://doi.org/10.1680/geot.1993.43.3.351
  4. Keskin, M. S., Bildik, S., and Laman, M. (2023), "Experimental and Numerical Studies of Vertical Stresses Beneath the Circular Footings on Sand", Applied Sciences, Vol.13, No.3.
  5. Keskin, S., Laman, M., and Baran, T. (2008), "Experimental Determination and Numerical Analysis of Vertical Stresses under Square Footings Resting on Sand", Teknik Dergi, Vol.19, No.4, pp.4521-4538.
  6. Kootahi, K. and Leung, A. K. (2022), "Effect of Soil Particle Size on the Accuracy of Tactile Pressure Sensors", Journal of Geotechnical and Geoenvironmental Engineering, Vol.148, No.10.
  7. KS F 2032 (2002), "The Method for Particle Size Distribution of Soils", Korean Standard, Korean Agency for Technology and Standards, Chungcheonbuk-do, Korea.
  8. KS F 2308 (2016), "Standard Test Method for Density of Soil Particles", Korean Standard, Korean Agency for Technology and Standards, Chungcheonbuk-do, Korea.
  9. Labuz, J. F. and Theroux, B. (2005), "Laboratory Calibration of Earth Pressure Cells", Geotechnical Testing Journal, Vol.28, No.2, pp.188-196. https://doi.org/10.1520/GTJ12089
  10. Lee, C., Shin, E., and Yang, T. (2022), "Analysis of Reinforcement Effect of Hollow Modular Concrete Block on Sand by Laboratory Model Tests", Journal of the Korean Geotechnical Society, Vol.38, No.7, pp.49-62. https://doi.org/10.7843/KGS.2022.38.7.49
  11. Lim, J. (2004), "An Experimental Investigation of Boussinesq's Theoretical Value of Vertical Stress Increment in Sandy Soil Mass Caused by Surface Strip Loading", Journal of the Korean Geotechnical Society, Vol.20, No.9, pp.7-15.
  12. Nam, H.-S. and Lee, S.-H. (2010), "Characteristics of Vertical Stress Distribution in Sandy Soil According to the Relative Compaction and Composition of the Soil Layer", Journal of the Korean Society of Agricultural Engineers, Vol.52, No.2, pp.43-50. https://doi.org/10.5389/KSAE.2010.52.2.043
  13. Paikowsky, S. G., Palmer, C. J., and Rolwes, L. E. (2006), "The Use of Tactile Sensor Technology for Measuring Soil Stress Distribution", GeoCongress 2006: Geotechnical Engineering in the Information Technology Age, pp.1-6.
  14. Peattie, K. R. and Sparrow, R. (1954), "The Fundamental Action of E arth P ressu re C ells", Journal of the Mechanics and Physics of Solids, Vol.2, No.3, pp.141-155. https://doi.org/10.1016/0022-5096(54)90021-6
  15. Shin, S., Lee, H., and Woo, S. I. (2022), "Experimental Assessment of Reduction in the Negative Skin Friction Using a Pile with a Member Responding to Ground Deformation", Journal of the Korean Geotechnical Society, Vol.38, No.3, pp.5-16.
  16. Tekscan (2020), Best practices in mechanical integration of the FlexiForceTM sensor, Tekscan Inc, South Boston, MA.
  17. Theroux, B., Labuz, J. F., and Dai, S. (2001), "Field Installation of an Earth Pressure Cell", Transportation Research Record, Vol.1772, No.1, pp.12-19. https://doi.org/10.3141/1772-02
  18. Useche-Infante, D., Aiassa-Martinez, G., Arrua, P., and Eberhardt, M. (2018), "Scale Model to Measure Stress under Circular Footings Resting on Sand", International Journal of Geotechnical Engineering, Vol.15, No.7, pp.877-886. https://doi.org/10.1080/19386362.2018.1541626
  19. Weiler Jr, W. A., and Kulhawy, F. H. (1982), "Factors Affecting Stress Cell Measurements in Soil", Journal of the Geotechnical Engineering Division, Vol.108, No.12, pp.1529-1548. https://doi.org/10.1061/AJGEB6.0001393
  20. Zarkiewicz, K., and Qatrameez, W. (2021), "Assessment of Stress in the Soil Surrounding the Axially Loaded Model Pile by Thin, Flexible Sensors", Sensors, Vol.21, No.21, pp.7214.
  21. Zhu, B., Jardine, R., and Foray, P. (2009), "The Use of Miniature Soil Stress Measuring Cells in Laboratory Applications Involving Stress Reversals", Soils and Foundations, Vol.49, No.5, pp.675-688. https://doi.org/10.3208/sandf.49.675