DOI QR코드

DOI QR Code

Preparation and Characterization of Fe-Ni Nanocatalyst for AEM Electrolysis via Spontaneous Reduction Reaction in Dry Process

건식 공정에서 자발적 환원 반응에 의한 AEM 수전해용 Fe-Ni 나노 촉매 제조 및 특성

  • JAEYOUNG LEE (Hydrogen Fuel Cell Regional Innovation Center, Woosuk University) ;
  • HONGKI LEE (Hydrogen Fuel Cell Regional Innovation Center, Woosuk University)
  • 이재영 (우석대학교 수소연료전지 부품 및 응용기술 지역혁신센터) ;
  • 이홍기 (우석대학교 수소연료전지 부품 및 응용기술 지역혁신센터)
  • Received : 2024.02.15
  • Accepted : 2024.04.19
  • Published : 2024.04.30

Abstract

Fe-Ni nanocatalysts loaded on carbon black were prepared via spontaneous reduction reaction of iron (II) acetylacetonate and nickel (II) acetylacetonate in dry process. Their morphology and elemental analysis were characterized by scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive X-ray analyzer. The loading weight of the nanocatalysts was measured by thermogravimetric analyze and the surface area was measured by BET analysis. TEM observation showed that Fe and Ni nanoparticles was well dispersed on the carbon black and their average particle size was 4.82 nm. The loading weight of Fe-Ni nanocatalysts on the carbon black was 6.83-7.32 wt%, and the value increased with increasing iron (II) acetylacetonate content. As the Fe-Ni loading weight increased, the specific surface area decreased significantly by more than 50%, because Fe-Ni nanoparticles block the micropores of carbon black. I-V characteristics showed that water electrolysis performance increased with increasing Ni nanocatalyst content.

Keywords

Acknowledgement

이 논문은 2023년도 RIS 에너지 신산업 사업단의 연구비 지원을 받아 수행된 연구임.

References

  1. J. Chi and H. Yu, "Water electrolysis based on renewable energy for hydrogen production", Chinese Journal of Catalysis, Vol. 39, No. 3, 2018, pp. 390-394, doi: https://doi.org/10.1016/S1872-2067(17)62949-8. 
  2. World Meteorological Organization (WMO), "2022 state of climate services: energy", WMO, 2022. Retrieved from https://library.wmo.int/records/item/58116-2022-state-of-climate-. 
  3. M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, "A comprehensive review on PEM water electrolysis", International Journal of Hydrogen Energy, Vol. 8, No. 12, 2013, pp. 4901-4934, doi: https://doi.org/10.1016/j.ijhydene.2013.01.151. 
  4. K. Zeng and D. Zhang, "Recent progress in alkaline water electrolysis for hydrogen production and applications", Progress in Energy and Combustion Science, Vol. 36, No. 3, 2010, pp. 307-326, doi: https://doi.org/10.1016/j.pecs.2009.11.002. 
  5. P. Vermeiren, W. Adriansens, J. P. Moreels, and R. Leysen, "Evaluation of the Zirfon® separator for use in alkaline water electrolysis and Ni-H2 batteries", International Journal of Hydrogen Energy, Vol. 23, No. 5, 1998, pp. 321-324, doi: https://doi.org/10.1016/S0360-3199(97)00069-4. 
  6. The Cenozoic CO2 Proxy Integration Project (CenCO2Pip) Consortium, "Toward a Cenozoic history of atmospheric CO2", Science, Vol. 382, No. 6675, pp. eadi5177, doi: https://doi.org/10.1126/science.adi5177. 
  7. W. Kreuter and H. Hofmann, "Electrolysis: the important energy transformer in a world of sustainable energy", International Journal of Hydrogen Energy, Vol. 23, No. 8, 1998, pp. 661-666, doi: https://doi.org/10.1016/S0360-3199(97)00109-2. 
  8. S. S. Kumar and H. Lim, "An overview of water electrolysis technologies for green hydrogen production", Energy Reports, Vol. 8, 2022, pp. 13793-13813, https://doi.org/10.1016/j.egyr.2022.10.127. 
  9. R. Kannan, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synchronized synthesis of Pd@C-RGO carbocatalyst for improved anode and cathode performance for direct ethy lene glycol fuel cell", Chemical Communications, Vol. 50, No. 93, 2014, pp. 14623-14626, doi: https://doi.org/10.1039/C4CC06879C. 
  10. R. Kannan, A. R. Kim, and D. J. Yoo, "Enhanced electrooxidation of methanol, ethylene glycol, glycerol, and xylitol over a polypyrrole/manganese oxyhydroxide/palladium nanocomposite electrode", Journal of Applied Electrochemistry, Vol. 44, No. 8, 2014, pp. 893-902, doi: https://doi.org/10.1007/s10800-014-0706-y. 
  11. H. N. Zhang, J. Wang, F. F. Sun, D. Liu, H. Y. Wang, and F. Wang, "Study of electroless copper plating on ABS resin surface modified by heterocyclic organosilane self-assemble d film", Bulletin of Materials Science, Vol. 37, No. 1, 2014, pp. 71-76. Retrieved from https://www.ias.ac.in/article/fulltext/boms/037/01/0071-0076.  https://doi.org/10.1007/s12034-014-0615-z
  12. M. El-Shafie, "Hydrogen production by water electrolysis technologies: A review", Results in Engineering, Vol. 20, 2023, pp. 101426 (1-17), https://doi.org/10.1016/j.rineng.2023.101426. 
  13. I. Vincent, E. C. Lee, and H. M. Kim, "Highly cost-effective platinum-free anion exchange membrane electrolysis for large scale energy storage and hydrogen production", RSC Advances, Vol. 10, No. 61, 2020, pp. 37429-37438, doi: https://doi.org/10.1039/D0RA07190K. 
  14. P. Zhang, J. Lee, and H. Lee, "Preparation and characterization of Pt-Ni nanocatalyst for anion exchange membrane in alkaline electrolysis by spontaneous reduction reaction", Journal of Hydrogen and New Energy, Vol. 33, No. 3, 2022, pp. 202-208, doi: https://doi.org/10.7316/KHNES.2022.33.3.202. 
  15. M. J. Jang, M. S. Won, K. H. Lee, and S. M. Choi, "Optimization of operating parameters and components for water electrolysis using anion exchange membrane", Journal of the Korean institute of surface engineering, Vol. 49, No. 2, 2016, pp. 159-165, doi: https://doi.org/10.5695/JKISE.2016.49.2.159. 
  16. V. Vij, S. Sultan, A. M. Harzandi, A. Meena, J. N. Tiwari, W. G. Lee, T. Yoon, and K. S. Kim, "Nickel-based electrocataly sts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions", ACS Cataly sis, Vol. 7, No. 10, 2017, pp. 7196-7225, doi: https://doi.org/10.1021/acscatal.7b01800. 
  17. S. C. Karthikeyan, S. Prabhakaran, R. S. Kumar, S. Ramakrishnan, A. R. Kim, D. H. Kim, and D. J. Yoo, "High-efficiency sustainable energy driven alkaline/seawater electrolysis using a novel hetero-structured non-noble bimetal telluride nanorods", Materials Today Nano, Vol. 24, 2023, pp. 10041 2, doi: https://doi.org/10.1016/j.mtnano.2023.100412. 
  18. S. Vijayapradeep, N. Logeshwaran, S. Ramakrishnan, A. R. Kim, P. Sampath, D. H. Kim, and D. J. Yoo, "Novel Pt-carbon core-shell decorated hierarchical CoMo2S4 as efficient electrocatalysts for alkaline/seawater hydrogen evolution reaction", Chemical Engineering Journal, Vol. 473, 2023, pp. 145 348, doi: https://doi.org/10.1016/j.cej.2023.145348. 
  19. J. Y. Lee, D. Yin, and S. Horiuchi, "Site and morphology controlled ZnO deposition on Pd catalyst prepared from Pd/PMMA thin film using UV lithography", Chemistry of Materials, Vol. 17, No. 22, 2005, pp. 5498-5503, doi: https://doi.org/10.1021/cm0506555. 
  20. J. Y. Lee, Y. Liao, R. Nagahata, and S. Horiuchi, "Effect of metal nanoparticles on thermal stabilization of polymer/metal nanocomposites prepared by a one-step dry process", Polymer, Vol. 47, No. 23, 2006, pp. 7970-7979, doi: https://doi.org/10.1016/j.polymer.2006.09.034.