DOI QR코드

DOI QR Code

A Review on Detection of COVID-19 Cases from Medical Images Using Machine Learning-Based Approach

  • 투고 : 2024.03.05
  • 발행 : 2024.03.30

초록

Background: The COVID-19 pandemic (the form of coronaviruses) developed at the end of 2019 and spread rapidly to almost every corner of the world. It has infected around 25,334,339 of the world population by the end of September 1, 2020 [1] . It has been spreading ever since, and the peak specific to every country has been rising and falling and does not seem to be over yet. Currently, the conventional RT-PCR testing is required to detect COVID-19, but the alternative method for data archiving purposes is certainly another choice for public departments to make. Researchers are trying to use medical images such as X-ray and Computed Tomography (CT) to easily diagnose the virus with the aid of Artificial Intelligence (AI)-based software. Method: This review paper provides an investigation of a newly emerging machine-learning method used to detect COVID-19 from X-ray images instead of using other methods of tests performed by medical experts. The facilities of computer vision enable us to develop an automated model that has clinical abilities of early detection of the disease. We have explored the researchers' focus on the modalities, images of datasets for use by the machine learning methods, and output metrics used to test the research in this field. Finally, the paper concludes by referring to the key problems posed by identifying COVID-19 using machine learning and future work studies. Result: This review's findings can be useful for public and private sectors to utilize the X-ray images and deployment of resources before the pandemic can reach its peaks, enabling the healthcare system with cushion time to bear the impact of the unfavorable circumstances of the pandemic is sure to cause

키워드

과제정보

We would like to acknowledge to Deanship of Scientific Research, Qassim University for funding publication of this research

참고문헌

  1. C. Huang et al., "Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China," Lancet, 2020, doi: 10.1016/S0140-6736(20)30183-5.
  2. C. Huang et al., "Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China," Lancet, vol. 395, no. 10223, pp. 497-506, 2020, doi: 10.1016/S0140-6736(20)30183-5.
  3. J. Cui, F. Li, and Z. L. Shi, "Origin and evolution of pathogenic coronaviruses," Nat. Rev. Microbiol., vol. 17, no. 3, pp. 181-192, 2019, doi: 10.1038/s41579-018-0118-9.
  4. W. C. Culp, "Coronavirus Disease 2019," A A Pract., vol. 14, no. 6, p. e01218, 2020, doi: 10.1213/xaa.0000000000001218.
  5. C. C. Lai, T. P. Shih, W. C. Ko, H. J. Tang, and P. R. Hsueh, "Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges," Int. J. Antimicrob. Agents, vol. 55, no. 3, p. 105924, 2020, doi: 10.1016/j.ijantimicag.2020.105924.
  6. C. R. Dennison Himmelfarb and D. Baptiste, "Coronavirus Disease (COVID-19)," Journal of Cardiovascular Nursing, vol. Publish Ah. 2020, doi: 10.1097/jcn.0000000000000710.
  7. W. Choi et al., "Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT," Radiology, vol. 1, pp. 1-13, 2020.
  8. M. Hammad, A. Maher, K. Wang, F. Jiang, and M. Amrani, "Detection of abnormal heart conditions based on characteristics of ECG signals," Meas. J. Int. Meas. Confed., vol. 125, pp. 634-644, 2018, doi: 10.1016/j.measurement.2018.05.033.
  9. H. Greenspan, B. Van Ginneken, and R. M. Summers, "Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique," IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1153-1159, 2016, doi: 10.1109/TMI.2016.2553401.
  10. A. S. Alghamdi, K. Polat, A. Alghoson, A. A. Alshdadi, and A. A. Abd El-Latif, "A novel blood pressure estimation method based on the classification of oscillometric waveforms using machine-learning methods," Appl. Acoust., vol. 164, p. 107279, 2020, doi: 10.1016/j.apacoust.2020.107279.
  11. D. B. Mule, S. S. Chowhan, and D. R. Somwanshi, "Detection and Classfication of Non-proliferative Diabetic Retinopathy Using Retinal Images," Commun. Comput. Inf. Sci., vol. 1036, pp. 312-320, 2019, doi: 10.1007/978-981-13-9184-2_28.
  12. L. Perez and J. Wang, "The Effectiveness of Data Augmentation in Image Classification using Deep Learning," 2017, [Online]. Available: http://arxiv.org/abs/1712.04621.
  13. R. Takahashi, T. Matsubara, and K. Uehara, "Data Augmentation Using Random Image Cropping and Patching for Deep CNNs," IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 9, pp. 2917-2931, 2020, doi: 10.1109/TCSVT.2019.2935128.
  14. Y. Jiang, H. Chen, M. H. Loew, and H. Ko, "COVID-19 CT Image Synthesis with a Conditional Generative Adversarial Network," IEEE J. Biomed. Heal. Informatics, no. 3, pp. 1-12, 2020, doi: 10.1109/JBHI.2020.3042523.
  15. P. Q. Le, A. M. Iliyasu, F. Dong, and K. Hirota, "Fast geometric transformations on quantum images," IAENG Int. J. Appl. Math., vol. 40, no. 3, 2010.
  16. M. Alghoniemy and A. H. Tewfik, "Geometric invariance in image watermarking," IEEE Trans. Image Process., vol. 13, no. 2, pp. 145-153, 2004, doi: 10.1109/TIP.2004.823831.
  17. M. Alazab, S. Venkatraman, P. Watters, M. Alazab, and A. Alazab, "Cybercrime: The case of obfuscated malware," Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng., vol. 99 LNICST, pp. 204-211, 2012, doi: 10.1007/978-3-642-33448-1_28.
  18. Y. Xu, Y. Wang, J. Yuan, Q. Cheng, X. Wang, and P. L. Carson, "Medical breast ultrasound image segmentation by machine learning," Ultrasonics, vol. 91, no. July 2018, pp. 1-9, 2019, doi: 10.1016/j.ultras.2018.07.006.
  19. T. Young, D. Hazarika, S. Poria, and E. Cambria, "Recent trends in deep learning based natural language processing [Review Article]," IEEE Comput. Intell. Mag., vol. 13, no. 3, pp. 55-75, 2018, doi: 10.1109/MCI.2018.2840738.
  20. M. Z. Alom et al., "The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches," 2018, [Online]. Available: http://arxiv.org/abs/1803.01164.
  21. D. Singh, V. Kumar, Vaishali, and M. Kaur, "Classification of COVID-19 patients from chest CT images using multi-objective differential evolution-based convolutional neural networks," Eur. J. Clin. Microbiol. Infect. Dis., vol. 39, no. 7, pp. 1379-1389, 2020, doi: 10.1007/s10096-020-03901-z.
  22. Y.-H. Wu et al., "JCS: An Explainable COVID-19 Diagnosis System by Joint Classification and Segmentation," pp. 1-11, 2020, [Online]. Available: http://arxiv.org/abs/2004.07054. https://doi.org/10.1109/TIP.2021.3058783
  23. C. Butt, J. Gill, D. Chun, and B. A. Babu, "Deep learning system to screen coronavirus disease 2019 pneumonia," Appl. Intell., 2020, doi: 10.1007/s10489-020-01714-3.
  24. X. Wu et al., "Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: A multicentre study," Eur. J. Radiol., vol. 128, no. April, pp. 1-9, 2020, doi: 10.1016/j.ejrad.2020.109041.
  25. H. C. Shin et al., "Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning," IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1285-1298, 2016, doi: 10.1109/TMI.2016.2528162.
  26. M. Loey, G. Manogaran, and N. E. M. Khalifa, "A deep transfer learning model with classical data augmentation and CGAN to detect COVID-19 from chest CT radiography digital images," Neural Comput. Appl., 2020, doi: 10.1007/s00521-020-05437-x.
  27. A. Narin, C. Kaya, and Z. Pamuk, "Department of Biomedical Engineering, Zonguldak Bulent Ecevit University, 67100, Zonguldak, Turkey.," arXiv Prepr. arXiv2003.10849., 2020, [Online]. Available: https://arxiv.org/abs/2003.10849. https://doi.org/10.1007/s10044-021-00984-y
  28. S. Minaee, R. Kafieh, M. Sonka, S. Yazdani, and G. Jamalipour Soufi, "Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning," Med. Image Anal., vol. 65, pp. 1-9, 2020, doi: 10.1016/j.media.2020.101794.
  29. I. D. Apostolopoulos and T. A. Mpesiana, "Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks," Phys. Eng. Sci. Med., vol. 43, no. 2, pp. 635-640, 2020, doi: 10.1007/s13246-020-00865-4.
  30. M. Farooq and A. Hafeez, "COVID-ResNet: A Deep Learning Framework for Screening of COVID19 from Radiographs," 2020, [Online]. Available: http://arxiv.org/abs/2003.14395.
  31. L. Wang, Z. Q. Lin, and A. Wong, "COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images," Sci. Rep., vol. 10, no. 1, pp. 1-12, 2020, doi: 10.1038/s41598-020-76550-z.
  32. E. E.-D. Hemdan, M. A. Shouman, and M. E. Karar, "COVIDX-Net: A Framework of Deep Learning Classifiers to Diagnose COVID-19 in X-Ray Images," 2020, [Online]. Available: http://arxiv.org/abs/2003.11055.
  33. T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim, and U. Rajendra Acharya, "Automated detection of COVID-19 cases using deep neural networks with X-ray images," Comput. Biol. Med., vol. 121, no. April, p. 103792, 2020, doi: 10.1016/j.compbiomed.2020.103792.
  34. F. Ucar and D. Korkmaz, "COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images," Med. Hypotheses, vol. 140, no. April, p. 109761, 2020, doi: 10.1016/j.mehy.2020.109761.
  35. A. Waheed, M. Goyal, D. Gupta, A. Khanna, F. Al-turjman, and P. R. Pinheiro, "CovidGAN : Data Augmentation using Auxiliary Classifier GAN for Improved Covid-19 Detection," pp. 1-9, 2020, doi: 10.1109/ACCESS.2020.2994762.
  36. T. Goel, R. Murugan, S. Mirjalili, and D. K. Chakrabartty, "Automatic Screening of COVID-19 Using an Optimized Generative Adversarial Network," Cognit. Comput., no. 0123456789, 2021, doi: 10.1007/s12559-020-09785-7.