DOI QR코드

DOI QR Code

기후변화시나리오를 이용한 미래 장기하상변동 및 골재 채취량 산정: 논산천을 사례로

Estimation of Future Long-Term Riverbed Fluctuations and Aggregate Extraction Volume Using Climate Change Scenarios: A Case Study of the Nonsan River Basin

  • 이대업 (한국지질자원연구원 산사태연구센터) ;
  • 김민석 (한국지질자원연구원 산사태연구센터) ;
  • 오현주 (한국지질자원연구원 산사태연구센터)
  • Dae Eop Lee (Landslides Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Min Seok Kim (Landslides Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Hyun Ju Oh (Landslides Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2024.03.10
  • 심사 : 2024.04.09
  • 발행 : 2024.04.29

초록

본 연구에서는 기후변화에 따른 하상변동과 골재 채취량 산정을 위해 논산천 유역을 대상으로 기후변화시나리오 기반의 SWAT 모형을 이용한 강우-유출 모델링과 HEC-RAS 모형을 이용한 장기 하상변동 모델링을 수행하였다. SSP5-8.5 시나리오의 미래 전반기에 대한 강우-유출 및 유사량 해석결과 연강수량의 차이가 최대 600 mm 이상 발생함에 따라 해당 유역의 유사유출량 또한 연간 30,000 ton 이상 차이가 발생하는 것으로 나타났다. 또한, 장기 하상변동 모델링을 통해 논산천 하류 하도의 퇴적구간 및 골재채취 가능량을 산정한 결과 금강 합류부로 부터 약 4.6~6.9 km의 상류부 2.455 km 구간에 대해 골재채취가 가능할 것으로 나타났다. 이러한 결과를 통해 극한강우 또는 가뭄 등의 이상기후로 인한 기후위기의 위험성이 커질 수 있으며 이러한 변동성의 증가는 장기적인 골재채취에 영향을 줄 수 있음을 확인하였다. 따라서 향후 장기적인 골재채취 계획 및 정책 수립에 기후변화의 영향을 고려하는 것이 중요할 것으로 판단된다.

The objective of this study is to estimate riverbed fluctuations and the volume of aggregate extraction attributable to climate change. Rainfall-runoff modeling, utilizing the SWAT model based on climate change scenarios, as well as long-term riverbed fluctuation modeling, employing the HEC-RAS model, were conducted for the Nonsan River basin. The analysis of rainfall-runoff and sediment transport under the SSP5-8.5 scenario for the early part of the future indicates that differences in annual precipitation may exceed 600 mm, resulting in a corresponding variation in the basin's sediment discharge by more than 30,000 tons per year. Additionally, long-term riverbed fluctuation modeling of the lower reaches of the Nonsan Stream has identified a potential aggregate extraction area. It is estimated that aggregate extraction could be feasible within a 2.455 km stretch upstream, approximately 4.6 to 6.9 km from the confluence with the Geum River. These findings suggest that the risk of climate crises, such as extreme rainfall or droughts, could increase due to abnormal weather conditions, and the increase in variability could affect long-term aggregate extraction. Therefore, it is considered important to take into account the impact of climate change in future long-term aggregate extraction planning and policy formulation.

키워드

과제정보

이 연구는 한국지질자원연구원에서 수행하고 있는 국토교통부 "2023년 골재자원조사 및 관리(23-5213)"의 지원으로 수행되었습니다. 또한 논문에 대한 세심한 검토와 제안을 해주신 심사위원 분들께 감사드립니다.

참고문헌

  1. Ahn, J., Lee, J.M., Do, Kim, Y. and Kang, B. (2016) Sensitive analysis of river geometry under various flow conditions in South Han River using GSTARS model. Journal of Korea Water Resources Association, v.49, n.4, p.347-359. (in Korean with English abstract). doi: 10.3741/JKWRA.2016.49.4.347
  2. Ahn, J., Lee, J.M., Kim, Y.D. and Kang, B. (2019) Effect of climate change on long-term riverbed change using GSTARS model in Nakdong River, Korea. KSCE Journal of Civil Engineering, v.23, p.1849-1859, doi: 10.1007/s12205-019-0193-0
  3. Chao, Y.C., Chen, C.W., Li, H.C. and Chen, Y.M. (2018) Riverbed migrations in Western Taiwan under climate change. Water, v.10, n.11, doi: 10.3390/w10111631
  4. Hong, S.S. and Lee, J.Y. (2023) Aggregate of Korea in 2021. Economic and Environmental Geology, v.56, n.1, p.87-101. (in Korean with English abstract). doi: 10.9719/EEG.2023.56.1.87
  5. Hong, S.S., Kim, J.Y. and Lee, J.Y. (2015) Trends of supply and demand of aggregate in Korea (I). The Journal of the Petrological Society of Korea, v.24, p.253-272, (in Korean with English abstract). doi: 10.7854/JPSK.2015.24.3.253
  6. Kim, J., Kim, M., Cho, Y., Oh, H. and Lee, C. (2021) Suggestion and Evaluation for Prediction Method of Landslide Occurrence using SWAT Model and Climate Change Data: Case Study of Jungsan-ri Region in Mt. Jiri National Park. Journal of Soil and Groundwater Environment, v.26, n.6, p.106-117, (in Korean with English abstract). doi: 10.7857/JSGE.2021.26.6.106
  7. Kim, J., Kwak, J., Hwang, S., Jun, S.M., Lee, S., Lee, J.N. and Kang, M.S. (2021) Analysis of flood control capacity of agricultural reservoir based on SSP climate change scenario. Journal of The Korean Society of Agricultural Engineers, v.63, p.49-62. (in Korean with English abstract). doi: 10.5389/KSAE.2021.63.5.049
  8. Koh, J.K., Choi, C.I. and Kim, H.S. (2008) A Study on Local Adaptation to Climate Change. Gyeonggi Research Institute. p.3-9, (in Korean with English abstract)
  9. Kondolf, G.M. (2022) Environmental effects of aggregate extraction from river channels and floodplains. In Aggregate Resources. CRC Press. p.113-129, ISBN: 9781003077954
  10. Lee, J. M., Ahn, J., Kim, Y.D. and Kang, B. (2021) Effect of climate change on long-term river geometric variation in Andong Dam watershed, Korea. Journal of Water and Climate Change, v.12, n.3, p.741-758, doi: 10.2166/wcc.2020.148
  11. Lee, J.S. and Kim, C.G. (2015) Field Measurement and Analysis for Discharge-Suspended Sediment of Small-Medium Streams in Nonsan Catchments, J. Korean Soc. Hazard Mitig. v.15, p.291- 296, (in Korean with English abstract). doi: 10.9798/KOSHAM.2015.15.1.291
  12. Lee, J.H., Choo, T.H. and Jee, H.K. (2011) Tributary bed stability method by main channel dredge in Nakdong river. In Proceedings of the Korea Water Resources Association Conference. p.275-279. (in Korean)
  13. Meinshausen, M., Nicholls, Z., Lewis, J., Gidden, M.J., Vogel, E., Freund, M., ... and Wang, H.J. (2019) The SSP greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development Discussions, p.1-77, doi: 10.5194/gmd-13-3571-2020
  14. MLTM. (2002) Geum River Basic Plan, Ministry of Land, Transport and Maritime Affairs. (in Korean)
  15. MOLIT. (2017) Aggregate Resources Survey Report in 2017, Ministry of Land, Infrastructure and Transport. (in Korean)
  16. O'Neill, B.C., Tebaldi, C., Van Vuuren, D.P., Eyring, V., Friedlingstein, P., Hurtt, G. ... and Sanderson, B.M. (2016) The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, v.9, n.9, p.3461-3482, doi: 10.5194/gmd-9-3461-2016
  17. Praskievicz, S. (2016) Impacts of projected climate changes on streamflow and sediment transport for three snowmelt-dominated rivers in the interior Pacific Northwest. River Research and Applications, v.32, n.1, p.4-17, doi: 10.1002/rra.2841
  18. Seo, A.S., Kim, T.G. and Lee, J.M. (2006) Climate change and natural disasters. Magazine of the Korean Society of Hazard Mitigation, v. 6, p. 8-15. (in Korean)
  19. Setegn, S.G., Srinivasan, R., Melesse, A.M. and Dargahi, B. (2010) SWAT model application and prediction uncertainty analysis in the lake Tana basin, Ethiopia. Hydrological Processes, v.24, p.357-367. doi: 10.1002/hyp.7457
  20. Slater, L.J. and Singer, M.B. (2013) Imprint of climate and climate change in alluvial riverbeds: Continental United States, 1950-2011. Geology, v.41, n.5, p.595-598, doi: 10.1130/G34070.1
  21. Son, S. and Choi, K. (2007) Hydraulic and Hydrological Influences of Gravel Mining on a River. ournal of Agriculture & Life Science, v.41, n.2, p.51-57. (in Korean with English abstract). UCI : G704-001926.2007.41.2.002 G704-001926.2007.41.2.002
  22. Won, H.Y. (2004) Prospect and Future Strategies for Aggregate Supply. Constructioin Economy, v.39, p.47-52. (in Korean)