DOI QR코드

DOI QR Code

스마트 그리드 배전계통을 위한 직렬 공진형 한류기 적용 방법 및 EMTP-RV 시뮬레이션 연구

Application Method and EMTP-RV Simulation of Series Resonance Type Fault Current Limiter for Smart Grid based Electrical Power Distribution System

  • 고윤석 (남서울대학교 전자공학과) ;
  • 이우철 (을지대학교 의료공학과)
  • 투고 : 2024.02.23
  • 심사 : 2024.04.12
  • 발행 : 2024.04.30

초록

본 논문에서는 저비용 제작이 가능한 직렬 공진형 한류기를 스마트 그리드 배전 계통에 적용하기 위한 방법을 연구하였다. 먼저, 한류기의 직렬 공진 회로에 주입되는 단락 전류의 고조파 성분들이 과도 응답의 피크 값에 미치는 영향에 대해서 분석하였으며, 퍼센트 임피던스 기반 고장 전류 계산법을 적용하여 정상 상태 응답을 결정하는 방법을 연구하였다. 다음, 시험 배전 선로에 적용하여 채택된 방법의 유효성을 검증하였다. 설계된 한류기를 적용한 시험 배전계통을 EMTP_RV를 이용하여 모델링하였으며 3상 단락 고장 시나리오를 모의하였다. 고장 모의 결과에서 한류기 적용 후 고장 전류의 정상 상태 응답이 설계 목표 값을 정확하게 추종하는 것을 확인하였다. 또한 한류기 적용 전과 후의 고장전류 파형 비교에서 고장 전류가 크게 억제되는 것을 확인함으로써 배전 계통에 대한 직렬 공진형 한류기 적용 효과를 확인할 수 있었다.

In this paper, a method was studied for applying a series resonant type fault current limiter that can be manufactured at low cost to the smart grid distribution system. First, the impact of the harmonic components of the short-circuit fault current injected into the series resonance circuit of the fault current limiter on the peak value of the transient response was analyzed, and a methodology for determining the steady-state response was studied using percent impedance-based fault current computation method. Next, the effectiveness of the method was verified by applying it to a test distribution line. The test distribution system using the designed current limiter was modeled using EMTP_RV, and a three-phase short-circuit fault was simulated. In the fault simulation results, it was confirmed that the steady-state response of the fault current accurately followed the design target value after applying the fault current limiter. In addition, by comparing the fault current waveform before and after applying the fault current limiter, it was confirmed that the fault current was greatly suppressed, confirming the effect of applying the series resonance type current limiter to the distribution system.

키워드

참고문헌

  1. A. Y. Wu and Y. Yin, "Fault-current Limiter Applications in Medium- and high-voltage Power Distribution Systems," IEEE Trans. on Industrial Electronics, vol. 34, no. 1, Jan./Feb. 1998, pp. 236-242. https://doi.org/10.1109/28.658751
  2. M. Dixit, S. Kedia, S. Kulkarni, S. Patil, L. Andrews, and A. Gupta, "Development of 440-V 800-A Resistive-Type Modular Superconducting Fault Current Limiter With YBCO Tapes," IEEE Transactions on Applied Superconductivity, vol. 22, no. 5, Oct. 2012, pp. 5603305-5603305. https://doi.org/10.1109/TASC.2012.2199318
  3. H. Kim, "Development of 154 kV Superconducting Fault Current Limiter," Journal of the Electric World, Special Issues 2, June 2015, pp. 19-25.
  4. J. W. Moscrop, "Experimental Analysis of the Magnetic Flux Characteristics of Saturated Core Fault Current Limiters," IEEE Trans. on Magnetics, vol. 49, no. 2, Feb. 2013, pp. 874-882. https://doi.org/10.1109/TMAG.2012.2214396
  5. B. Li, F. Guo, J. Wang, and C. Li, "Electromagnetic Transient Analysis of the Saturated Iron-Core Superconductor Fault Current Limiter," in IEEE Transactions on Applied Superconductivity, vol. 25, no. 3, June 2015, pp. 1-5. https://doi.org/10.1109/TASC.2014.2374191
  6. M. Ichikawa and M. Okazaki, "A Magnetic Shielding Type Superconducting Fault Current Limiter using A Bi2212 Thick Film Cylinder," in IEEE Tran. on Applied Superconductivity, vol. 5, no. 2, June 1995, pp. 1067-1070. https://doi.org/10.1109/77.402736
  7. E. Mukai and A. Tada, "Study on Reduction of Steady-state Impedance in Magnetic Shielding Type Superconducting Fault Current Limiter," 2008 18th International Conference on Electrical Machines, Vilamoura, Portugal, 2008.
  8. Y. Feng, E. Johnson, O. Saadeh, J. C. Balda, H. A. Mantooth, and M. Schupbach, "Impact of Solid-state Fault Current Limiters on Protection Equipment in Transmission and Distribution Systems," IEEE PES T&D 2010, New Orleans, LA, USA, 2010.
  9. S. Yadav, G. K. Choudhary, and R. K. Mandal, "Review on Fault Current Limiters, "International Journal of Engineering Research & Technology (IJERT), vol. 3, no. 4, Apr. 2014, pp. 1595-1603.
  10. S. Chen, P. Li, B. Lehman, R. Ball, and J. Palma, "A New Topology of Bridge-type Non-Superconducting Fault Current Limiter," 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, Mar. 2013.
  11. A. Heidary, H. Radmanesh, S. H. Naghibi, S. Samandarpour, K. Rouzbehi, and N. Shariati, "Distribution System Protection by Coordinated Fault Current Limiters," IET Energy Systems Integration, vol. 2, no. 1, Mar. 2020, pp. 59-65. https://doi.org/10.1049/iet-esi.2019.0066
  12. S. B. Naderi, M. Jafari, and M. T. Hagh, "Parallel-resonance-type Fault Current Limiter, "IEEE Trans. on Industrial Electronics, vol. 60, no. 7, July 2013, pp. 2538-2546. https://doi.org/10.1109/TIE.2012.2196899
  13. M. Rezaee and R. G. Harley, "Resonance-Based Fault Current Limiters: Theory, Applications, and Assessment," IEEE Trans. on Industry Applications, vol. 54, no. 4, July-Aug. 2018, pp. 3066-3076. https://doi.org/10.1109/TIA.2018.2817626
  14. O. H. Eyuboglu, B. Dindar, and O. Gul, "Series Resonance Type Fault Current Limiter for Fault Current Limitation and Voltage Sag Mitigation in Electrical Distribution Network," 2020 2nd Global Power, Energy and Communication Conference (GPECOM), Izmir, Turkey, 2020.
  15. K. Hwang, H. Lee, and C. Moon, "A Study on Development of Superconducting Wires for a Fault Current Limiter," Journal of the KIECS, vol. 17, no. 02, Apr. 2022, pp. 279-290.
  16. Y. Ko and W. Lee, "Review of Typical Fault Current Limiter Types and Application Effect to Improve Power System Reliability, "Journal of the KIECS, vol. 18, no. 06, Dec. 2023, pp. 1133-1142.
  17. H. Radmanesh, A. Heidary, S. H. Fathi, and G. B. Gharehpetian, "Series Resonance Based Fault Current Limiter with Controlling The Point of Common Coupling Voltage," Journal of Iranian Association of Electrical and Electronics Engineers, vol. 14, no. 4, 2017, pp. 111-117.
  18. A. Heidary, H. Radmanesh, and G. B. Gharehpetian, "Effect of the Series Resonance LC Tank on the Mitigation of Fault Current in Radial Distribution Networks," Indian Journal of Science and Technology, vol. 9, no. 7, article no. 20, Feb. 2016.
  19. S. Marx and D. Bender, "An Introduction to Symmetrical Components, System Modelling and Fault Calculation," In 30th Annual Hands-On Relay School, Washington University, Pullman, Washington, USA, Mar. 2016
  20. Y. Ko, S. Oh, H. Kim, and I. Kim, "A Study on the Fault Analysis for a Micro Smart Grid Simulator Design Using MEMS' Miniaturization Technology," Journal of the KIECS, vol. 12, no. 2, Apr. 2017, pp. 315-324.