DOI QR코드

DOI QR Code

Study on Discharge Phenomenon Occurring in Transmitting Resonance Coil of Wireless Power Transmission

무선전력전송의 송전 공진코일에서 발생하는 방전현상 연구

  • Gi-Bum Lee (Dept. of Energy Engineering, DAEJIN University)
  • 이기범 (대진대학교 에너지공학부)
  • Received : 2024.01.04
  • Accepted : 2024.04.12
  • Published : 2024.04.30

Abstract

In this paper, in implementing a 4-coil resonant wireless power transmission system, we studied the discharge phenomenon that occurs at the end of the transmitting resonance coil. Resonant wireless power transmission consists of a power supply coil, a transmitting resonance coil, a power receiving resonance coil, and a load coil. The transmitting resonance coil serves to amplify the magnetic field generated from the power supply coil and transmits it to the front receiving resonance coil. When a high current flows through the power supply coil in order to transmit large power, a high voltage is induced at the end of the transmitting resonance coil. It causes line-to-line discharge. Line-to-line discharge phenomenon damages the transmitter case and renders the transmitter unusable. Therefore, in order to eliminate this line-to-line discharge phenomenon, the voltage induced in the transmitting resonance coil that causes line-to-line discharge was analyzed and a solution was proposed.

본 논문에서는 4-코일 방식의 자기공진 무선전력전송 시스템을 구현하는 데 있어서, 송전 공진코일의 끝단에서 발생하는 선간 방전현상을 연구하였다. 자기공진 무선전력전송은 급전코일, 송전 공진코일, 수전 공진코일, 부하코일로 구성되어 있다. 여기서 송전 공진코일은 급전코일에서 발생한 자기장을 증폭하여 전방의 수전 공진코일로 전달하는 역할을 한다. 큰 전력을 전송하기 위하여 급전코일에 높은 전류를 흘려주면 송전 공진코일 끝단에 높은 전압이 유기되어 선간 방전현상이 일어나게 된다. 선간 방전현상은 송전기 케이스를 손상시키게 되고, 송전기를 사용할 수 없는 상태로 만든다. 따라서 이러한 선간 방전현상을 제거하기 위하여, 선간 방전을 일으키는 송전 공진코일에 유기되는 전압을 분석하고, 해결 방안을 제시하였다.

Keywords

References

  1. Yiming. Zhang, Key Technologies of Magnetically Coupled Resont Wireless Power Transfer. Beijing, China, Springer, 2017.
  2. Jong-Gyun Lim, "A study on the development of high-efficiency transmitting and receiving coils for wireless charging of drones," Journal of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 2, 2022, pp. 213-218.
  3. Andre Kurs, Aristeidis Karalis, Robert Moffatt, J. D. Joannpoulos, Peter Fisher, and Marin Soljacic, "Wireless Power Transfer via Strongly Coupled Magnetic Resonances," Science Magazine, vol. 317, no. 5834, 2007, pp. 83-86.
  4. Sung-Man Kim, Jae-Woo Shin, "Underwater Simultaneous Light Information and Power Transmission using a Laser Diode," Journal of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 5, 2022, pp. 853-858.
  5. Mssood Rehman1, Zuhairi Baharudin1, Perumal Nallagownden1, and Badar ul Islam1, "Design and Analysis of Resonant Wireless Power Transfer System," MATEC Web of Conferences, UTP Perak, UMP Pahang, Malaysia and VIT Tamil Nadu, India, 2018, pp. 1-13.
  6. Alanson P. Sample, David T. Meyer, and Joshua R. Smith, "Analysis, Experimental Results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer," IEEE Transaction on Industrial Electronics, vol. 58, no. 2, Feb. 2010, pp. 544-554. https://doi.org/10.1109/TIE.2010.2046002
  7. Gunbok Lee, Him-Chan Yun, GiBum Lee, and Wee Sang Park, "Design of a Double-Layer Spiral Resonator for Wireless Power Transfer," International Symposium on Antennas and Propagation, Jeju, Korea, 2011.
  8. F. Mohammed Ali A. Al-Raie, "Design of Input Matching Networks for Class-E RF Power Amplifiers," High Frequency Electronics, 권, 호수 없습니다. 2011, pp. 40-48.
  9. P. Jiang, J. Bian, "Low dielectric loss BST/PTFE composites for microwave applications," Applied Ceramic Technology, 권, 호수 없습니다. 2018, pp. 152-159.
  10. Choong-Mo Youn, "Study on the Design of High Efficient Class-E Power Amplifier and Resonant Coils for High Efficient Wireless Power Transfer System," Journal of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 10, 2016, pp. 935-940. https://doi.org/10.13067/JKIECS.2016.11.10.935
  11. Jaehyun Park, Haeyoul Yang, and Chang-sun Kim, "Review for the Helical coil type and Spiral coil type in a mid range Wireless Power Transfer System," KIEE Summer Conference, Pyeongchang-gun, Korea, 2011, pp. 11-12.
  12. Isuf Krasniqi, Vjollca Komoni, Avni Alidemaj, and Gazmend Kabashi, Kosovo, "Corona Losses Dependence from the Conductor Diameter," 권, 호수 없습니다. Recent Researches in Power Systems and Systems Science, 2011, pp. 112-117.