DOI QR코드

DOI QR Code

Effects of loading frequency and specimen size on the liquefaction resistance of clean sand

  • Sung-Sik Park (Department of Civil Engineering, Kyungpook National University) ;
  • Dong-Eun Lee (Department of Architectural Engineering, Kyungpook National University) ;
  • Dong-Kiem-Lam Tran (Department of Civil Engineering, Kyungpook National University)
  • 투고 : 2023.12.12
  • 심사 : 2024.03.19
  • 발행 : 2024.04.25

초록

This study investigates the effects of loading frequency (f) and specimen size on the liquefaction resistance of clean sand. A series of cyclic direct simple shear tests were conducted on Jumunjin sand with varying consolidated relative densities (40% and 80%), f values (0.05, 0.10, and 0.20 Hz), and diameter to height (D/H) ratios (3.63, 3.18, 2.82, and 2.54). The results demonstrated the significant influence of f and D/H ratio on the number of cycles to liquefaction (Ncyc-liq) and the cyclic resistance ratio (CRR15). It was observed that increasing f linearly increased Ncyc-liq. Increasing the specimen height also led to higher Ncyc-liq values irrespective of the f or relative density. Moreover, a positive correlation between CRR15 and f indicated that higher f yielded higher CRR15. This relationship was more pronounced in dense sand than in loose sand. Specimen height also significantly affected CRR15, with increasing the specimen height resulting in higher CRR15 values. Furthermore, the effect of f on CRR15 was less significant compared to the influence of specimen height. The effect of f on the normalized cyclic resistance ratio (NCRR) was relatively negligible for loose sand but more substantial for dense sand depending on the D/H ratio. Data analysis revealed that the NCRR generally decreases as the D/H ratio increases. An interpolation formula was provided to calculate the NCRR based on the D/H ratio regardless of the f and relative density.

키워드

과제정보

The research described in this paper was financially supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2018R1A5A1025137).

참고문헌

  1. Amer, M.I., Kovacs, W.D. and Aggour, M.S. (1987b), "Cyclic simple shear size effects", J. Geotech. Eng., 113(7), 693-707. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:7(693). 
  2. Amipour, S., Khashila, M., Bayoumi, A., Karray, M. and Chekired, M. (2022), "Specimens size effect D/H on cyclic behaviour and liquefaction potential of clean sand", Acta Geotech., 17(5), 2047-2057. https://doi.org/10.1007/s11440-021-01339-x. 
  3. ASTM D422-63 (2014), Standard test method for particle-size analysis of soils. Annual Book of ASTM Standards, American Society for Testing and Materials International, West Conshohocken, USA. 
  4. Bjerrum, L. and Landva, A. (1966), "Direct simple-shear tests on a Norwegian quick clay", Geotechnique, 16(1), 1-20. https://doi.org/10.1680/geot.1966.16.1.1. 
  5. Boulanger, R.W. and Idriss, I.M. (2004), Evaluating the potential for liquefaction or cyclic failure of silts and clays. Citeseer.
  6. Budhu, M. (1984), "Nonuniformities imposed by simple shear apparatus", Can. Geotech. J., 21(1), 125-137. https://doi.org/10.1139/t84-010. 
  7. Carroll, M.D. (1979), Sample Size Effects Using the NGI Direct Simple Shear Apparatus. Air Force Inst Of Tech Wright-Patterson Afb Oh. 
  8. Chang, N.Y., Hsieh, N.P., Samuelson, D.L. and Horita, M. (1982), "Effect of frequency on liquefaction potential of saturated monterey No. O sand", Comput. Method. Exp. Meas., (Eds., Keramidas, G.A. and Brebbia,C.A.), 433-446. Berlin, Heidelberg: Springer. 
  9. Chang, W.J., Phantachang, T. and Ieong, W.M. (2016), "Evaluation of size and boundary effects in simple shear tests with distinct element modeling", J. Geoengin., 11(3), 133-142. https://doi.org/10.6310/jog.2016.11(3).3. 
  10. Dash, H.K. and Sitharam, T.G. (2016), "Effect of frequency of cyclic loading on liquefaction and dynamic properties of saturated sand", Int. J. Geotech. Eng., 10(5), 487-492. https://doi.org/10.1080/19386362.2016.1171951. 
  11. Doherty, J. and Fahey, M. (2011), "Three-dimensional finite element analysis of the direct simple shear test", Comput. Geotech., 38(7), 917-924. https://doi.org/10.1016/j.compgeo.2011.05.005. 
  12. Dyvik, R., Berre, T., Lacasse, S. and Raadim, B. (1987), "Comparison of truly undrained and constant volume direct simple shear tests", Geotechnique, 37(1), 3-10. https://doi.org/10.1680/geot.1987.37.1.3. 
  13. Fuenkajorn, K. and Phueakphum, D. (2010), "Effects of cyclic loading on mechanical properties of Maha Sarakham salt", Eng. Geol., 112(1-4), 43-52. https://doi.org/10.1016/j.enggeo.2010.01.002. 
  14. Ghionna, V.N. and Porcino, D. (2006), "Liquefaction resistance of undisturbed and reconstituted samples of a natural coarse sand from undrained cyclic triaxial tests", J. Geotech. Geoenviron. Eng., 132(2), 194-202. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(194). 
  15. Gratchev, I.B., Sassa, K., Osipov, V.I., Fukuoka, H. and Wang, G. (2007), "Undrained cyclic behavior of bentonite-sand mixtures and factors affecting it", Geotech. Geol. Eng., 25(3), 349. https://doi.org/10.1007/s10706-006-9115-2. 
  16. Gujrati, S., Hussain, M. and Sachan, A. (2023), "Liquefaction susceptibility of cohesionless soils under monotonic compression and cyclic simple shear loading at drained/undrained/partially drained modes", Transp. Infrastruct. Geotechnol., 10, 391-423. https://doi.org/10.1007/s40515-022-00226-6. 
  17. Hird, C.C. and Hassona, F.A.K. (1990), "Some factors affecting the liquefaction and flow of saturated sands in laboratory tests", Eng. Geol., 28(1-2), 149-170. https://doi.org/10.1016/0013-7952(90)90039-4. 
  18. Hussain, M. and Sachan, A. (2022), "Cyclic simple shear behaviour of saturated and moist sandy soils", Geomech. Geoeng., 17, 1762-1785. https://doi.org/10.1080/17486025.2021.1975045. 
  19. Hussain, M. and Sachan, A. (2020a), "Dynamic behaviour of Kutch soils under cyclic triaxial and cyclic simple shear testing conditions", Int. J. Geotech. Eng., 14, 902-918. https://doi.org/10.1080/19386362.2019.1608715. 
  20. Hussain, M. and Sachan, A. (2020b), "Effect of loading conditions and stress history on cyclic behavior of Kutch soil", Geomech. Geoeng., 15, 233-251. https://doi.org/10.1080/17486025.2019.1635716. 
  21. Ishihara, K. (1993), "Liquefaction and flow failure during earthquakes", Geotechnique, 43(3), 351-451. https://doi.org/10.1680/geot.1993.43.3.351. 
  22. JIS A 1224 (2020), Test method for minimum and maximum densities of sands. Japanese Standards Association (JSA), Tokyo, Japan. 
  23. Kovacs, W.D. and Leo, E. (1981), "Cyclic simple shear of large scale sand samples: effects of diameter to height ratio", Int. Conf. Recent Adv. Geotech. Earthq. Eng. Soil Dyn., 897-904. 
  24. Lade, P.V. and Yamamuro, J.A. (1997), "Effects of nonplastic fines on static liquefaction of sands", Can. Geotech. J., 34(6), 918-928. National Research Council of Canada. https://doi.org/10.1139/t97-052. 
  25. Lee, K. and Fitton, J. (1969), "Factors affecting the cyclic loading strength of soil", Vib. Eff. Earthq. Soils Found., https://doi.org/10.1520/STP33637S. Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International. 
  26. Lee, K.L. and Focht, J.A. (1975), "Liquefaction potential at Ekotisk tank in North Sea", J. Geotech. Eng. Div., 101(1), 1-18. American Society of Civil Engineers. https://doi.org/10.1061/AJGEB6.0000138. 
  27. Manmatharajan, V. (2022), "Factors affecting liquefaction assessment of granular soils through laboratory testing", PhD Thesis. University of Toronto (Canada). 
  28. Monkul, M.M., Gultekin, C., Gulver, M., Akin, O . and Eseller-Bayat, E. (2015), "Estimation of liquefaction potential from dry and saturated sandy soils under drained constant volume cyclic simple shear loading", Soil Dyn. Earthq. Eng., 75, 27-36. https://doi.org/10.1016/j.soildyn.2015.03.019. 
  29. Mulilis, J.P. (1975), "The effects of method of sample preparation on the cyclic stress-strain behaviour of sands", Tech. Rep. Univ Calif. Berkeley, 75. 
  30. Nong, Z., Park, S.S., Jeong, S.W. and Lee, D.E. (2020), "Effect of cyclic loading frequency on liquefaction prediction of sand", Appl. Sci. Switz., 10(13). https://doi.org/10.3390/app10134502. 
  31. Nong, Z.Z., Park, S.S. and Lee, D.E. (2021), "Comparison of sand liquefaction in cyclic triaxial and simple shear tests", Soils Found., 61(4), 1071-1085. The Japanese Geotechnical Society. https://doi.org/10.1016/j.sandf.2021.05.002. 
  32. Nong, Z.Z. and Park, S.S. (2021), "Effect of loading frequency on volumetric strain accumulation and stiffness improvement in sand under drained cyclic direct simple shear tests", J. Geotech. Geoenviron. Eng., 147(12). https://doi.org/10.1061/(asce)gt.1943-5606.0002706. 
  33. Normandeau, D.E. and Zimmie, T.F. (1991), "The effect of frequency of cyclic loading on earth structures and foundation soils", University of Missouri-Rolla. 
  34. NRC (1985), "Liquefaction of soils during earthquakes", Comm. Earthq. Eng. National Academy Press. 
  35. Pandya, S. and Sachan, A. (2022), "Effect of frequency and amplitude on dynamic behaviour, stiffness degradation and energy dissipation of saturated cohesive soil", Geomech. Geoeng., 17(1), 30-44. https://doi.org/10.1080/17486025.2019.1680885. 
  36. Park, S.S. and Kim, Y.S. (2013), "Liquefaction resistance of sands containing plastic fines with different plasticity", J. Geotech. Geoenviron. Eng., 139(5), 825-830. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000806. 
  37. Park, S.S., Tran, D.K.L., Nguyen, T.N., Woo, S.W. and Sung, H.Y. (2023), "Effect of loading frequency on the liquefaction resistance of poorly graded sand", Adv. Geospatial Technol. Min. Earth Sci. Sel. Pap. 2nd Int. Conf. Geo-Spat. Technol. Earth Resour. 2022. 
  38. Peacock, W.H. and Seed, H.B. (1968), "Sand liquefaction under cyclic loading simple shear conditions", J. Soil Mech. Found. Div., 94(3), 689-708. American Society of Civil Engineers. https://doi.org/10.1061/JSFEAQ.0001135. 
  39. Polito, C. (1999), "The effects of non-plastic and plastic fines on the liquefaction of sandy soils", PHD TheisVirginia Tech, (December): 274. 
  40. Saxena, S.K., Reddy, K.R. and Avramidis, A.S. (1988), "Liquefaction resistance of artificially cemented sand", J. Geotech. Eng., 114(12), 1395-1413. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:12(1395). 
  41. Seed, H.B., Idriss, I.M., Makdisi, F. and Banerjee, N. (1975), "Representation of irregular stress time histories by equivalent uniform stress series in liquefaction analyses", Report No. EERC 75-29. Earthq. Eng. Res. Cent. Univ. Calif. Berkeley. 
  42. Shen, C.K., Herrmann, L.R. and Sadigh, K. (1978), "An analysis of NGI simple shear apparatus for cyclic soil testing", Dyn. Geotech. Test., 148-162. ASTM International. 
  43. Silva, W. (1988), Soil response to earthquake ground motion: Final report. Woodward-Clyde Consultants, Walnut Creek, CA (USA). 
  44. Sonmezer, Y.B. (2019a), "Investigation of the liquefaction potential of fiber-reinforced sand", Geomech. Eng., 18(5), 503-513. https://doi.org/10.12989/gae.2019.18.5.503. 
  45. Sonmezer, Y.B. (2019b), "Energy-based evaluation of liquefaction potential of uniform sands", Geomech. Eng., 17(2), 145-156. https://doi.org/10.12989/gae.2019.17.2.145 
  46. Sonmezer, Y.B., Kayabali, K., Beyaz, T. and Fener, M. (2022), "Influence of grain size ratio and silt content on the liquefaction potentials of silty sands", Geomech. Eng., 31(2), 167-181. https://doi.org/10.12989/gae.2022.31.2.167. 
  47. Tatsuoka, F., Maeda, S., Fujii, S. and Yamada, S. (1983), "Cyclic undrained strengths of saturated sand under random and uniform loading and their relation", Bull ERS Inst. Ind. Sci. Univ Tokyo, 16, 11-31. 
  48. Tatsuoka, F., Toki, S., Miura, S., Kato, H., Okamoto, M., Yamada, S., Yasuda, S. and Tanizawa, F. (1986), "Some factors affecting cyclic undrained triaxial strength of sand", Soil Found., 26(3), 99-116. https://doi.org/10.3208/sandf1972.26.3_99. 
  49. Tran, D.K.L., Park, S.S., Nguyen, T.N., Park, J.H., Sung, H.Y., Son, J.H. and Hwang, K.B. (2024a), "Effect of non-plastic fines content on the pore pressure generation of sand-silt mixture under strain-controlled CDSS test", J. Earthq. Eng. Soc. Korea, 28, 33-39. https://doi.org/10.5000/EESK.2024.28.1.033 
  50. Tran, D.K.L., Woo, S.W., Lee, S.D., Nguyen, N.N. and Park, S.S. (2024b), "Couple effect of loading frequency and uniformity coefficient on the liquefaction resistance of sand", (Eds., Reddy, J.N., Wang, C.M., Luong, V.H. and Le, A.T.), Proceedings of the 3rd International Conference on Sustainable Civil Engineering and Architecture, Lecture Notes in Civil Engineering. Springer Nature Singapore, Singapore, 1085-1091. https://doi.org/10.1007/978-981-99-7434-4_114. 
  51. Vernese, F.J. and Lee, K.L. (1977), Effect of frictionless caps and bases in the cyclic triaxial test. Department of Defense, Department of the Army, Corps of Engineers, Waterways.... 
  52. Wang, J. and Gutierrez, M. (2010), "Discrete element simulations of direct shear specimen scale effects", Geotechnique, 60(5), 395-409. https://doi.org/10.1680/geot.2010.60.5.395. 
  53. Wong, R.T., Seed, H.B. and Chan, C.K. (1975), "Cyclic loading liquefaction of gravelly soils", J. Geotech. Eng. Div., 101(6), 571-583. https://doi.org/10.1061/AJGEB6.0000174. 
  54. Yamamuro, J.A. and Lade, P.V. (1997), "Static liquefaction of very loose sands", Can. Geotech. J., 34(6), 905-917. https://doi.org/10.1139/t97-057. 
  55. Yoshimi, Y. and Oh-oka, H. (1975), "Influence of degree of shear stress reversal on the liquefaction potential of saturated sand", Soils Found., 15(3), 27-40. https://doi.org/10.3208/sandf1972.15.3_27. 
  56. Zeybek, A. (2022), "Stress-controlled dynamic triaxial experiments to examine the liquefaction response of clean sand", Bitlis Eren u niversitesi Fen Bilim. Derg., 11(2), 669-680. 
  57. Zhang, J., Cao, J. and Huang, S. (2019), "Experimental study on the effects of initial shear stress and vibration frequency on dynamic strength of saturated sands", Adv. Mater. Sci. Eng., 2019. https://doi.org/10.1155/2019/3758527. 
  58. Zhu, Z., Zhang, F., Peng, Q., Dupla, J.C., Canou, J., Cumunel, G. and Foerster, E. (2021), "Effect of the loading frequency on the sand liquefaction behaviour in cyclic triaxial tests", Soil Dyn. Earthq. Eng., 147, 106779. https://doi.org/10.1016/j.soildyn.2021.106779.